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Research on the source signal recovery and shape image reconstruction from data
with incomplete information based on sparse representation
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Sparsity

I1-norm Sparsity Incoherence

We proposed a new sparsity measure, which is determinant of squared signal
matrix. It is smooth and convex function so that have many good features than the conventional ones. We
applied it to the blind source separation of nonnegative signal, made effective algorithms. We also
researched on the sparse representation. Since this problem is underdetermined system of linear

equations, a regularization is necessary. For this purpose we apply a spare constraint to the
coefficient, by Il-norm, and a constraint to the dictionary, by incoherence. We use the penalty function
method to convert the constrained optimization problem into unconstrained ones. Then we change the
problem into a series of iterations of sub optimization problems of quadratic functions and proximal
operators, or two different sub optimization problems of quadratic functions. Furthermore, we can solve
these sub problems explicitly and obtained closed-form solutions, which leads to algorithms with many
good performances.
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BB TR Y : We worked out a method
for learning an overcomplete, nonnegative
dictionary and for obtaining the
corresponding coefficients so that a group
of nonnegative signals can be sparsely
represented by them. This is accomplished
by posing the learning as a problem of
nonnegative matrix factorization (NMF)
with maximization of the incoherence of
the dictionary and of the sparsity of
coefficients. By incorporating a
dictionary—incoherence penalty and a
sparsity penalty in the NMF formulation
and then adopting a hierarchically
alternating optimization strategy, we

show that the problem can be cast as two
sequential optimal problems of quadratic
functions. Each optimal problem can be
solved explicitly so that the whole
problem can be efficiently solved, which
leads to the proposed algorithm, 1i.e.,
sparse hierarchical alternating least
squares (SHALS). The SHALS algorithm is
structured by iteratively solving the two
optimal problems, corresponding to the
learning process of the dictionary and to
the estimating process of the coefficients
for reconstructing the signals. Numerical
experiments demonstrate that the new
algorithm performs better than the
nonnegative K-SVD (NN-KSVD) algorithm and
several other famous algorithms, and its
computational cost 1is remarkably lower
than the compared algorithms.

( 3 )We worked out a novel two step
underdetermined blind source separation
approach for non-disjointed signals.
First, the single—source—points (SSPs),
each of that is occupied by a single source,
are detected in the mixtures; the mixing
matrix is then estimated accurately by
employing K-means algorithm among those
SSPs. In the separation procedure, we
finds the time—frequency points that
incorporates one source, two sources, and
so on, so that they construct a row
echelon—like form a system. Then, these
sources at the points can be solved out
explicitly under weak assumptions. The
highlight is that algorithm does not rely
on the non—-stationarity, independence or
the non—Gaussianity, as in the
conventional ICA algorithms. Experimental
results indicate the validity of the
method.

(4) We worked out a fast, efficient
algorithm for learning an overcomplete
dictionary for sparse representation of
signals. The whole problem is considered
as a minimization of the approximation
error function with a coherence penalty
for the dictionary atoms and with the

sparsity regularization of the
coefficient matrix. Because the problem is
nonconvex and nonsmooth, this

minimization problem cannot be solved
efficiently by an ordinary optimization
method. We propose a decomposition scheme
and an alternating optimization that can
turn the problem into a set of
minimizations of piecewise quadratic and
univariate subproblems, each of which is
a single variable vector problem, either



of one dictionary atom or one coefficient
vector. Although the subproblems are still
nonsmooth, remarkably, they become much
simpler so that we can find a closed—form
solution by introducing a proximal
operator. This leads an efficient
algorithm for sparse representation. To
our knowledge, applying the proximal
operator to the problem with an
incoherence term and obtaining the optimal
dictionary atoms in closed form with a
proximal operator technique have not
previously been studied. The main
advantages of the proposed algorithm are
that, as suggested by our analysis and
simulation study, it has lower
computational complexity and a higher
convergence rate than state—of-the—art
algorithms. In addition, for real
applications, it shows good performance
and significant reductions in
computational time. Z ALIZ DWW THNEIX
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