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We study orders and valuation rings. About order theory, we give the necessary
and sufficient conditions for the ring of Morita contexts to be maximal orders in terms of modules
theory. we obtain that the necessary and sufficient conditions for skew polynomial rings and
differential polynomial rings to be generalized Asano rings. we completely describe the structure of
projective ideals in skew polynomial rings over hereditary rings, which leads us to find a new class of
rings being called "generalized hereditary rings".

A?oug the study of valuation rings, we study prime ideals in graded extensions for crossed product
algebras.
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