科学研究費助成事業

研究成果報告書

6 月 1 1 日現在 平成 27 年

機関番号: 1 1 3 0 1						
研究種目: 挑戦的萌芽研究						
研究期間: 2012 ~ 2014						
課題番号: 2 4 6 5 0 3 0 7						
研究課題名(和文)高磁場MRIによる心臓リハビリテーションの心機能改善効果の非侵襲的定量評価法						
研究課題名(英文)Fundamental study of magnetic resonance examination for cardiac rehabilitation patient: Development of a real-time measurement device for temperature in the gantry during magnetic resonance imaging						
研究代表者						
千田 浩一(CHIDA, Koichi)						
東北大学・災害科学国際研究所・教授						
研究者番号:2 0 3 2 3 1 2 3						
交付決定額(研究期間全体):(直接経費) 3,000,000円						

研究成果の概要(和文):心臓磁気共鳴診断(MRI)検査は有用だが、心臓MRIの検査時間は長く、心臓リハビリ テーションの検査として不適当である。 高磁場強度を有するMRI装置が普及し有用性が示唆されているが、温度上昇つまりSAR規制により3テスラMRI の短時間化への応用は行われていない。 今回、MRIにおける温度上昇を計測するため、非磁性体プローブ(銅-コンスタンタン熱電対センサーおよび長尺の 非磁性体ケーブル)と、その信号をMRI検査室外にてリアルタイムモニターする今までにないシステムを新たに構築 した。MRIの短時間化の向けに大きく役立つものと期待できる。

研究成果の概要(英文): The conventional cardiac magnetic resonance (MR) examination necessitates long examination times and impedes its utility as a diagnostic tool, since few cardiac patients can tolerate long procedures. Furthermore, even in current 3T-MRI, the long examination time results in a temperature rise associated with SAR. Most commercial real-time thermometer systems cannot be used for accurate temperature monitoring during MRI because they are made of magnetic materials. We have developed a novel, direct real-time temperature measurement system for use during MRI procedures. The system consists of sensors with thermocouples using non-magnetic materials, a cable with electromagnetic shielding, and a display system. The sensors and cables of the new thermometer resulted in no artifacts on MRI. The new thermometer presented here is a very effective tool for real-time temperature measurement during MRI. Furthermore, such measurement methods will aid the development of short-term MRI sequences.

研究分野: 放射線科学

キーワード: リハビリテーション MRI 医療・福祉

1.研究開始当初の背景

心臓リハビリテーション(心リハ)は、Q OL(Quality of Life)改善などの大きな効 果があり需要が増加しているが、心リハが及 ぼす中枢性作用(心臓への作用:心機能等改 善効果)の、正確で客観的な非侵襲的評価方 法は無い。

心臓の磁気共鳴診断(Magnetic Resonance Imaging:MRI)検査は低侵襲的な心疾患 診断法として有用だが、心臓MRIの検査時 間は約1.5時間と長く、心リハ患者の検査 として不適当である。

最近、高磁場強度(3テスラ)を有するM RI装置が臨床普及しつつあり、画質向上等 の高い有用性が示唆されているが、後述する SAR規制により3テスラMRIの短時間 化への応用は行われていない。

MRI検査に負荷試験を組合せることで心 リハが及ぼす中枢作用をより正確に定量評 価できる。その為にはMRIの短時間化が必 須であると考える。

そのために、後述のSAR規制をクリアす るような、シネMRI等の新しい撮像シーケ ンスや、撮像パラメータを開発する必要があ る。そして、そのためにはSARによる温度 上昇を実測できるシステムを構築しなけれ ばならない。

MRI 検査において、撮像中に人体の温度 が局所的に上昇することがある。その原因は、 ラジオ波(Radio Frequency: RF)により人体 に吸収されて熱となる、比吸収率(Specific Absorption Rate: SAR)の影響である。よ ってMRI検査中の患者熱傷の危険性を防 ぐため SAR 規制値が設けられており、具体 的には RF パルスの照射が制限され、よって 短時間MR撮影は不可能な状況にある。

現在SAR(比吸収率)は実測はされずに、計 算値によって求められ、その値によって規制 されている。

SARの計算式を以下に示す

SAR 電気伝導率・球体半径²・磁場強度²・フリッ プ角²・デューティサイクル

しかし、人体の形状や電気伝導率等は一定 でないため、計算値と実際のMRI検査時の 温度上昇は異なる。よって、従来の計算値に よる評価では全く不十分であるため、MR時 における以下のようなSARによる温度上 昇を計測するシステムを独自に開発する。

このSAR規制は、従来のMRI装置では 問題にならなかったが、高磁場MRI装置は、 RFパルスの周波数も倍増するため、温度上 昇が重要な問題となっている。そこで本研究 では、高磁場MRI装置におけるSARに伴 う温度上昇の計測システム開発に関する基 礎的検討を行った。

2.研究の目的 本研究の目的は、高磁場MRI装置(3テ スラ)におけるSARに伴う温度上昇の計測 システム開発することである。そしてSAR による温度上昇を実測できるシステムを構 築することで、短時間MRIに関する新しい 撮像シーケンスや、撮像パラメータの開発を 目指ざす。

3.研究の方法

(1) 高磁場MRI装置(3テスラ) における温度計測方法の検討

従来から知られていたMR時の温度評価 方法である、「蛍光ファイバー式温度計」お よび「MRIパラメータ測定値を利用する方 法」に加えて、「熱電対」が使用可能である か新しく検討を行った。

(2)熱電対プローブの基礎検討

非磁性熱電対として銅 - コンスタンタン を用いて検討した。銅 - コンスタンタン熱電 対プローブおよび非磁性ケーブルが、MR画 像に与える影響の有無等について検討した。 MRI装置管理用ボトルファントム上に、熱 電対プローブを貼付し高磁場(3テスラ)で のMRIを施行した(図1)。なお、MRI撮 像は、磁化率の影響を受けやすいグラジエン トエコー法(GRE)と高SARである高速 スピンエコー(TSE)で行い、画像を視覚 評価した。

図 1. 熱電対(ア)とケーブル(イ)と MRI 装置管 理用ボトルファントム(ウ)

(3)高磁場MRI装置におけるリアルタイ ム温度計測システムの構築

SARによる温度上昇を計測するシステムを新しく開発する。上記の検討結果を踏まえて、非磁性体プローブのセンサーとして、 銅-コンスタンタン熱電対を用いることで、 MRI検査中の温度計測が可能であること が分かった。よって新システムは、非磁性体 プローブは、銅-コンスタンタン熱電対セン サーおよび長尺の非磁性体ケーブルからな り、その信号を、MRI検査室外にてリアル タイムモニターするシステムを構築した。

(4)リアルタイム温度計測システムの性能 評価

高磁場MRI装置において、開発したリア ルタイム温度計測システムの性能評価につ いて、以下の初期的な検討を行った。(図2) MRI撮像中の温度計測の検証:インプラ ント材料である(図3)をファントムに装着 し、熱電対プローブを接触させて、MRスキ ャン時の経時的な温度変化をモニターした。 TSE法で約3分の撮像を20回繰返し、経時的な変化を観察した。なおMRI検査にお いてインプラント材は発熱することが知られている。

MR検査室

図 2. 性能評価実験配置図

図 3. チタンプレート(インプ ラント材料)

RFシールド材の検討

高磁場MRI装置によっては、TSE法に おいて、測定データにノイズが入る場合があ ったため、RFシールド材(図4)を用いて ノイズ除去が可能か検討した。

図 4. RF シールド材 ケーブルを RF シールド 材()で覆っている

4.研究成果

(1)高磁場MRI装置における温度計測方 法の検討

「蛍光ファイバー式温度計」は、温度によ って発光スペクトルが変化する蛍光体を有 するプローブ(磁場の影響を受けない)と、 その蛍光体が発した光を伝送する光ファイ バーと、光ファイバーから出射した光のスペ クトルを測定して分析することにより温度 に変換する分光分析装置とを備えている。し かしながら、蛍光ファイバー式温度計は、温 度を直接測定するものではなく、測定温度に 対応する発光スペクトルを測定し、その発光 スペクトルを分析して温度に変換する間接 的な温度測定を行うものである。そのため、 温度の測定精度が低く、高精度の温度測定を 行うことができないという問題がある。また、 蛍光ファイバー式温度計では、上記発光スペ クトルの測定及び分析並びに温度への変換 処理に時間を要するため、高速サンプリング

周期で温度を測定することができない。

「MRIパラメータ測定値を利用する方法」は、MRIパラメータである緩和時間(T 1)やプロトンケミカルシフトの測定値を用 いて生体の温度変化を推定する方法である。 すなわちMRI検査時の生体における相対 的な温度変化をMRIパラメータから間接 的に評価するものであり、温度[]]の値そ のものを測定するものではない。温度は、推 定値しか得られないため、よって本研究では 使用できない。

「熱電対」は絶対温度の測定が可能である ため、比較的多用されている温度計である。 しかし今まで、MRIの温度測定として熱電 対は使用されていなかった。その大きな理由 は、熱電対は金属なので、MRIは無理とい う先入観のためと考えられる。だが申請者ら が種々調査検討した結果、非磁性材料を用い た熱電対も存在することが分かった。そこで、 非磁性体材料を使用したタイプの熱電対に よる高磁場MRI装置における温度計測シ ステムを構築することを決めた。なお、温度 表示アンプ部は磁性体であるため、それはM RI操作室に配置する。その概要図を図5に 示す。

図 5. 非磁性体材料を使用したタイプの熱電対 による高磁場MRI装置における温度計測システ ム概要図

(MR 検査室内は高磁場であるので、温度表示アン プ部は検査室外(操作室)に置く。熱電対プローブか らの温度情報は非磁性ケーブルを介して、温度表示 アンプ部へ導かれる。)

(2)熱電対プローブの基礎検討

非磁性熱電対(銅-コンスタンタン)プロ ーブおよびケーブルが、MR画像に与える影響について検討した。なお、グラジエントエ コー法(GRE)と高速スピンエコー(TS E)のMR撮像条件は以下のとおりであった。

	TR/TE (msec)	スライス 厚	枚数	時間	SAR
GRE	450/16	6	20	1′50″	2%
TSE	4500/90	6	20	2'55	76%

MR画像に与える影響の検討結果の1例 を図6に示すが、銅-コンスタンタンの熱電 対プローブおよびケーブルは、画像へ悪影響 を及ぼすことはなかった。

図 6. 非磁性体プローブのMR画像への影響の 有無(GRE 法)

(3) 高磁場MRI装置におけるリアルタイム温度計測システムの構築

SARによる温度上昇を計測するシステムを新しく開発した。その装置構成を以下に示す。

1.温度測定プローブ(図7):銅-コンス タンタンの熱電対。非浸潤処理された非磁性 の絶縁体で被覆されている。

2.非磁性体ケーブル(図8):熱電対の出 力端に接続された絶縁性の磁気シールド材 で被覆された導線。熱電対からの信号を温度 表示アンプ部へ導く。

 3.温度表示・記録装置(図9):Omni Light Rm1100。磁性体であるため、MRI検査室の外(操作室)に置く。

非磁性体 ケーブル()

図 8.

(4) リアルタイム温度計測システムの性能 評価

MRI攝像中の温度計測の検証

温度測定時のMR画像の一例を図10に 示す。チタンプレートに起因したアーチファ クトが生じているが、銅-コンスタンタンの 熱電対プローブおよびケーブルは、画像へ悪 影響を及ぼすことはなかった。

図 10. チタンプレートお よび非磁性体プロープ の M R 画 像 へ の 影 響の有無(GRE 法) アーチファクトが生じて いる()

図11は、温度測定結果の一例である。M R撮像中はチタンプレート(インプラント材料)に起因した温度上昇が認められたが、撮 像終了後に、温度が急速に低下していること が確認できた。

図 11. 温度測定結果の一例(インプラント装着時)

RFシールド材の検討

高磁場MRI装置によっては、ノイズが入るMR機種もあったが、RFシールド材でケーブルを覆うとノイズは入らなかった。

(5) さいごに

以上、MRI検査中の今までにない温度計 測システムの開発に成功し、本システムの基 本的な性能評価を行い、有用性を確認した。 さらに開発したMRI検査中の温度計測シ

ステムに関して、特許出願を行うことができ た。(特願2014-020099、「温度測 定プローブ及び温度測定システム」、平成2 6年2月5日)。 今後は、このシステムのさらなる改良を行 う。そしてSARによる温度上昇を実測した うえで、MR短時間シーケンスの開発を進め る。よって本研究は、MRIの短時間化の推 進へ向けに大きく役立つものと期待できる。 5.主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線) [学会発表](計 1 件) 永坂 竜男、<u>千田 浩一</u>、MRI 装置用リア ルタイム温度計測システムの試作、第4回東 北放射線医療技術学術大会、2014年10月26 日、新潟市 〔産業財産権〕 出願状況(計 1 件) 名称:温度測定プローブ及び温度測定システ Δ 発明者:千田<u>浩一</u> 権利者:同上 種類:特許 番号:特願2014-020099 出願年月日:平成26年2月5日 国内外の別: 国内 6.研究組織 (1)研究代表者 千田 浩一 (CHIDA Koichi) 東北大学・災害科学国際研究所・教授 研究者番号:20323123 (2)研究分担者 なし (3)連携研究者 上月 正博(KOHZUKI Masahiro) 東北大学・大学院医学系研究科・教授 研究者番号:70234698 洞口 正之(ZUGUCHI Masayuki) 東北大学・大学院医学系研究科・名誉教授 研究者番号:20172075 (4)研究者協力者 永坂 竜男 (NAGASAKA Tatsuo) 東北大学・大学病院・主任技師、臨地講師 中村 正明 (NAKAMURA Masaaki) 東北大学・大学院医学系研究科・非常勤講 師