### 科学研究費助成事業

研究成果報告書



平成 2 6 年 6 月 6 日現在

| 機関番号: 87202                                                                             |
|-----------------------------------------------------------------------------------------|
| 研究種目:挑戦的萌芽研究                                                                            |
| 研究期間: 2012 ~ 2013                                                                       |
| 課題番号: 2 4 6 5 4 0 7 8                                                                   |
| 研究課題名(和文)パラメトリックX線を利用した新しい電子ビームプロファイルモニタの開発                                             |
| 研究課題名(英文)Development of electron beam profile monitors using parametric X–ray radiation |
| 研究代表者<br>高林 雄一(TAKABAYASHI Yuichi)                                                      |
|                                                                                         |
| 公益財団法人佐賀県地域産業支援センター九州シンクロトロン光研究センター・加速器グループ・副主任研究員                                      |
| 研究者番号:5 0 4 5 0 9 5 3                                                                   |
| 交付決定額(研究期間全体):(直接経費) 2,900,000 円 、(間接経費) 870,000 円                                      |
|                                                                                         |

研究成果の概要(和文):従来,リニアックの電子ビームのプロファイルモニタとして,可視遷移放射(OTR)が用いられてきた.しかし最近,X線自由電子レーザー用リニアックにおいて,OTRがコヒーレントになり,ビームのプロファイル測定に利用できないことが判明した.コヒーレントになることを避けるには,より波長の短い光を利用する必要がある.そこで,本研究では,パラメトリックX線(PXR)の利用を提案する.PXRを用いた測定法として,近接法,ピンホール法,フレネルゾーンプレート法という3つの手法を提案し,前者の2つに関して,原理の検証実験に成功した.さらに,残るフレネルゾーンプレート法に関する研究が進行中である.

研究成果の概要(英文): A beam profile is extremely useful for the examination of the beam emittance and o ptical parameters associated with accelerators. Optical transition radiation (OTR) is commonly used as a h igh precision profile monitor for electron beams in linacs. However, it was found that for short beam bunc hes in linacs dedicated to X-ray free electron lasers, the OTR becomes coherent, making it unsuitable for use as a beam profile monitor.

In order to avoid this coherence, photons with shorter wavelengths are required. In this study, we propo se to exploit parametric X-ray radiation through three new approaches: (i) a local method, (ii) a pinhole method, and (iii) a Fresnel-zone-plate (FZP) method. We have succeeded in performing proof-of-principle ex periments on the local method and the pinhole method. In addition, we designed an experimental setup for t he FZP method; its proof-of-principle experiment is in progress.

研究分野: 数物系科学

科研費の分科・細目:物理学素粒子・原子核・宇宙線・宇宙物理

キーワード: パラメトリックX線 相対論的電子ビーム 結晶 ビームモニタ

### 1. 研究開始当初の背景

ビームのプロファイルは、ビームのエミッ タンスや加速器電磁石の配置で決まる光学 的関数を把握する上で重要であり、その測定 は加速器分野において必要不可欠である.従 来,電子ビームのプロファイルの測定には、 蛍光板がよく用いられてきた.この手法では、 電子ビームが蛍光板に入射した際に放出さ れる蛍光を CCD カメラで捉えることにより、 ビームのプロファイルが測定される.非常に シンプルな手法であるため、広く用いられて きた.しかし、蛍光板の内部で発生した光が 散乱されて広がる効果、いわゆる"にじみの 効果"により、ビームサイズが実際よりも大 きく測定されてしまうという問題がある.

一方,より正確な測定が必要な場合には, 可視遷移放射(optical transition radiation: OTR)が用いられてきた.OTRとは,荷電粒 子が誘電率の異なる物質の境界を横切ると きに生じる放射現象である.OTR 用スクリー ンとして,金属薄膜等が用いられている.こ の場合,OTR は金属薄膜の表面で生成される ため,にじみの効果はなく,正確な測定が可 能となる.

しかし最近,X線自由電子レーザー(X-ray free electron laser: XFEL) 施設であるアメリカ の LCLS や日本の SPring-8 SACLA において, OTR がコヒーレントになり, ビームのプロフ ァイル測定に利用できないことが判明した [1,2]. XFEL 用リニアックでは、ビームのバ ンチ長は短くなるよう調整されるが、 バンチ 内の微視的構造(microstructure)が、その原 因である. OTR がコヒーレントになると、も はや OTR の強度はビームの強度に比例しな いため、ビームのプロファイル測定に利用で きなくなるのである.また、ビームサイズが 可視光の波長より小さい場合にも, OTR はコ ヒーレントになると考えられる.現在,世界 規模で研究開発が進んでいる国際リニアコ では、電子と陽電子の衝突頻度をあげるため、 ビームを小さく絞ることが考えられている が,この場合も OTR はコヒーレントになる と考えられる.

コヒーレントになることを避けるには、より波長の短い光を利用する必要がある. ロシ アのトムスク工科大学のグループは、極端紫 外(EUV)領域の遷移放射の利用を提案して いる[3]. しかし、EUV 光は物質中での吸収 が大きいために、大気中に取り出すことが困 難であるため、CCD カメラや光学系を真空中 に設置しなければならないという問題があ る.

そこで、本研究では、パラメトリックX線 (parametric X-ray radiation: PXR)の利用を提 案する.PXRとは、相対論的荷電粒子が結晶 に入射した際に、ブラッグ条件を満たす方向 にX線が放射される現象である.入射荷電粒 子のまとっている擬似的光子が、結晶によっ て回折される現象と解釈することができる. PXR は X 線であるため,波長は十分短く, XFEL 用の電子ビームを用いても、コヒーレ ントにはならない.また,EUV の遷移放射と 異なり、ベリリウム窓等を用いれば、大気中 に簡単に取り出すことも可能である.このよ うに PXR は、バンチ長が極端に短い XFEL 加速器やビームサイズが極端に小さいILCの ような先端加速器用のビームプロファイル モニタとして有用であると考えられる.

2. 研究の目的

本研究の目的は、PXR を利用した、新しい 電子ビームのプロファイルモニタを開発す ることである.後述するように、本研究では、 電子ビームのプロファイルの測定法として、 下記の3つの手法を提案する.

(1) 近接法

(2) ピンホール法

(3) フレネルゾーンプレート法

本研究では、これら3つの手法に関して、原 理の検証実験を行う.

### 3. 研究の方法

電子を結晶に入射させた際に発生する PXRのプロファイルは、PXRの角度分布、結 晶におけるビームプロファイル、結晶におけ るビームの角度分布の3者によって決まる. 近似的に、PXRのプロファイルの大きさσ<sub>PXR</sub> は、次式のように書くことができる.

$$\sigma_{\rm PXR} \approx \sqrt{\left(L\sigma_{\rm PXR}'\right)^2 + \sigma_{\rm beam}^2 + \left(L\sigma_{\rm beam}'\right)^2}.$$
 (1)

ここで、 $\sigma'_{PXR}$ は PXR の角度拡がり、 $\sigma_{beam}$ は ビームの大きさ、 $\sigma'_{beam}$ はビームの角度拡がり、 *L* は結晶から X 線検出器までの距離を示す. X 線検出器を結晶に十分近づけると( $L \rightarrow 0$ )、 (1)式から、 $\sigma_{PXR} \rightarrow \sigma_{beam}$ となる.つまり、PXR のプロファイルは、主にビームのプロファイ ルを反映するようになる.これが近接法の原 理である.

近接法は、非常にシンプルな手法ではある が、実験条件によっては、X線検出器の放射 線損傷が問題となり、X線検出器を結晶に近 づけられない場合もあると考えられる.そこ で、X線検出器を結晶から遠い位置に設置す る"遠隔法"を提案する.この場合は、ビー ムの像を X線検出器まで転送するための光 学系が必要となる.本研究では、遠隔法とし て、ピンホール法とフレネルゾーンプレート 法という2つの手法を提案する.

実験は、九州シンクロトロン光研究センター(SAGA Light Source: SAGA-LS)のリニア ックからの 255 MeV 電子ビームを用いて行 った. SAGA-LS のリニアック室には、相対 論的電子ビームと結晶の相互作用研究を目 的とし、2010年に研究代表者らが構築した専 用ビームライン[4]が備わっており、それを利 用して実験を行った.ビームの平均電流は~7 nA、加速の繰り返しは1 Hz であった.標的 として、厚さ 20 μm の Si 単結晶を用いた. Si 結晶は,真空チェンバー内に収納された2 軸回転可能なゴニオメーターに取り付けた. 以下,手法ごとに詳述する.

#### (1) 近接法

図 1 に近接法の実験装置の概念図を示す [5]. 回折面は Si の(220)面, ブラッグ角は 13° とした.この場合, ブラッグエネルギーは 14.4 keV と計算される. X 線検出器として, 大き さ 100 × 100 mm<sup>2</sup>のイメージングプレートを 採用した. イメージングプレートは, 感度の リニアリティが高い, 位置分解能が高い, 検 出面積が大きい, 扱いやすいなど多くの特長 を持つ. 光源点になるべく近づけるために, イメージングプレートも真空チェンバー内 に設置した. 光源点からイメージングプレー ト上の回折スポットまでの距離は 55.6 mm で あった. ビームを遮らないようにするため, イメージングプレートの中心には直径 20 mm の穴をあけた.

(2) ピンホール法

この手法は、いわゆるピンホールカメラの 原理に基づくものである. 図 2(a)にピンホー ル法の実験装置の概念図を示す[6]. 回折面は Siの(220)面、ブラッグ角は 16.1°とした. こ の場合,ブラッグエネルギーは11.6 keV と計 算される. PXR は, 32.2°方向にある厚さ 250 μm のベリリウム窓を通して大気中へと取り 出した.X線検出器として、大きさ200×200 mm<sup>2</sup>のイメージングプレートを用いた. ピン ホールプレートの材質はタングステン,厚さ は2mm, ピンホールの直径は200 µm であっ た. 光源点からピンホールまでの距離は d1 = 421 mm, ピンホールからイメージングプレ-トまでの距離は d<sub>2</sub> = 210.5 mm とした. この場 合, ピンホールカメラの倍率は  $M = d_2/d_1 = 0.5$ と計算される.

比較のため, OTR を用いたビームプロファ イルの測定も行った.その実験装置の概念図 を図 2(b)に示す. Si 結晶を 45°傾け, 90°方向 に放出される OTR を,真空窓を通して取り 出し, CCD カメラで捉えた.

(3) フレネルゾーンプレート法

図3にフレネルゾーンプレート法の実験装置の概念図を示す.フレネルゾーンプレート







図 2 : (a) ピンホール法の実験装置の概念図. (b) OTR を用いたビームプロファイル測定の概 念図.

とは、X線の透過帯と不透過帯が、交互に同 心円状に配置されたものであり、X線領域に おいてレンズとしての働きを持つ.図3には、 フレネルゾーンプレートを2枚用いた例(X 線のエネルギーは7.1keV,倍率は2倍)を示 した.フレネルゾーンプレートを2枚用いる ことにより、倍率の調整が柔軟に行えるよう になる.また、2枚目のプレートは高次光を 抑制する働きもある.X線吸収体は、非回折 光(0次光)を遮るために用いる.

4. 研究成果

(1) 近接法

イメージングプレートを用いて測定した PXR のプロファイルを図 4(a)に示す.測定時 間は,60 s であった.PXR の収量は計算によ り,~7 × 10<sup>6</sup>と見積もられる.青い丸は,イ メージングプレートにあけた穴を示す.イメ ージングプレートをビームに近づけたため, バックグラウンドは大きかったが,PXR のプ ロファイルを明瞭に観測することに成功し た.縦長のプロファイルが得られたが,これ は,入射したビームが縦長であったことを反 映している.



図 3: フレネルゾーンプレート法の実験装置の 概念図.

図 4(b)と(c)は、それぞれ、水平と鉛直方向 のプロファイルを示す.これらのプロファイ ルは、主にビームのプロファイルを反映して いるが、正確には PXR の角度分布も畳み込ま れている.つまり、PXR のプロファイルから ビームサイズを導出するためには、PXR の角 度分布をデコンボリュートする必要がある. そこで、理論計算により、ビームサイズと PXR プロファイルの大きさの対応関係を求 めた.結果を図5に示す.横軸はビームサイ ズo(ガウス関数で表したときの標準偏差), 縦軸はビームサイズを考慮して理論計算に より求めた PXR プロファイルの半値半幅

(half width at half maximum: HWHM)を示す. この図の対応関係を使えば、観測された PXR のプロファイルからビームサイズを導出す ることができる.

図 4(b)と(c)から, PXR プロファイルの半値 半幅は $\Delta x_{HWHM} = 0.64$  mm,  $\Delta y_{HWHM} = 1.31$  mm と求められた. イメージングプレートが垂直 入射条件から 26°傾いていることを考慮する と,  $\Delta x_{HWHM} = 0.64 cos(26°) = 0.57$  mm と補正さ れる. 図 5 の対応関係を用いると, これらの 半値半幅からビームサイズは,  $\sigma_x = 0.15$  mm,  $\sigma_y = 0.76$  mm と導出された. 別途, 結晶位置 にスクリーン (厚さ 100 µm のアルミナ蛍光 板)を設置してビームサイズを測定したとこ ろ,  $\sigma_x \cong 0.2$  mm,  $\sigma_y \cong 0.7$  mm と求められた. これらの値は, PXR のプロファイルから得ら れた値とよく一致した. このように, 本研究 により, 近接法の原理の検証実験に成功した といえる.



図4:(a) PXR の2次元のプロファイル.(b) 水 平プロファイル.(c) 鉛直プロファイル.赤の 実線は,あるモデル式によるフィットを示す.



図 5:理論計算により求めたビームサイズと PXR プロファイルの大きさ(半値半幅)の関係. (a) 水平方向, (b) 鉛直方向.

(2) ピンホール法

まず,ピンホールを設置せずに,PXRのプ ロファイル (PXRの角度分布)の測定を行っ た.結果を図 6 に示す. $\theta_x = x_{IP}/(d_1 + d_2), \theta_y = y_{IP}/(d_1 + d_2)$  ( $x_{IP}, y_{IP}$ はイメージングプレート 上の水平,鉛直位置),ブラッグ方向を 0°と 定義した.測定時間は,600 s であった.PXR に特徴的な,中心に穴のあいた分布が得られ た.ピンホールは,PXRの分布のピーク位置 に設置した.

ピンホールを設置して得られたプロファ イルを図 7(a)に示す. ピンホールカメラの倍 率を考慮し,  $x = x_{IP}/M$ ,  $y = y_{IP}/M$ と換算した. このプロファイルは, 12600 ショット分積算 したものである. 計算により, ピンホールを



図 6: ピンホールを設置せずに測定した PXR の プロファイル(角度分布).この測定の後,丸 で示した位置にピンホールを設置した(ピンホ ールの大きさは,拡大していることに注意).



図 7:(a) PXR を用いて得られたビームプロファ イル. (b) OTR を用いて得られたビームプロフ ァイル.

通過した PXR の収量は、 $\sim 3 \times 10^5$  と見積もら れる. 図 8(a)と(b)には、それぞれ、水平と鉛 直方向のプロファイルを示した. バックグラ ウンドは差し引き、ピークの高さは1になる ように規格化した. これらのプロファイルに ガウス関数をフィットすることにより、プロ ファイルの大きさは $\sigma_{PXR,x(meas)} = 268 \ \mu m$ ,  $\sigma_{PXR,y(meas)} = 553 \ \mu m$ と求められた. これらの 値には、ピンホールが有限の大きさを持つこ とによる像のぼけの大きさ( $\sigma_{pinhole}$ )と測定 系の位置分解能( $\sigma_{det}$ )が畳み込まれている. よって、真のビームサイズは、次式のように 書くことができる.

$$\sigma_{\text{PXR},s} = \sqrt{\sigma_{\text{PXR},s(\text{meas})}^2 - \sigma_{\text{pinhole}}^2 - \sigma_{\text{det}}^2}.$$
 (2)

ここで, s = x, y である.  $\sigma_{\text{pinhole}}$ は次式のよう に書くことができる.

$$\sigma_{\text{pinhole}} = \frac{d_1 + d_2}{d_1} \frac{r_0}{2}.$$
 (3)

 $r_0$ はピンホールの半径である.また, $\sigma_{det}$ は次 式で与えられる.

$$\sigma_{\rm det} = \frac{\sigma_{\rm IP}}{M}.$$
 (4)



図 8: PXR と OTR を用いて得られたビームプ ロファイル. (a) 水平方向, (b) 鉛直方向.

 $\sigma_{IP}$ はイメージングプレートの位置分解能で, 48  $\mu$ m と見積もられた[7]. これらの値を(2) 式に代入すると、 $\sigma_{PXR,x}$ =238  $\mu$ m、 $\sigma_{PXR,y}$ = 539  $\mu$ m と求められた.表1に、これらの値を まとめた.なお、ピンホールによってX線が 回折される効果は、ピンホール径が比較的大 きいために無視できる.

また、比較のため、OTR を用いてビームプ ロファイルの測定を行った.結果を図 7(b)に 示す.これは、1ショット分のプロファイル である.非対称性も含めて、PXR を用いて得 られたプロファイルとよく一致した.図 8(a) と(b)の実線は、水平と鉛直方向のプロファイ ルを示す.これらのプロファイルにガウス関 数をフィットすることにより、プロファイル の大きさは、 $\sigma_{OTR,x(meas)} = 278 \ \mu m$ 、 $\sigma_{OTR,y(meas)} = 616 \ \mu m$  と求められた.これらの値には、測定 系の位置分解能( $\sigma_{CCD}$ )が畳み込まれている. よって、真のビームサイズは次式のように書 くことができる.

$$\sigma_{\text{OTR},s} = \sqrt{\sigma_{\text{OTR},s(\text{meas})}^2 - \sigma_{\text{CCD}}^2}.$$
 (5)

 $\sigma_{CCD}$ は 125  $\mu$ m と見積もられた[6]. よって, (5)式から,  $\sigma_{OTR,x}$  = 248  $\mu$ m,  $\sigma_{OTR,y}$  = 603  $\mu$ m と 求められる.表 2 に, これらの値をまとめた.

 $\sigma_{PXR,x}$ は $\sigma_{OTR,x}$ とほぼ一致したが、 $\sigma_{PXR,y}$ は  $\sigma_{OTR,y}$ よりも約10%小さい値となった. ピン ホールカメラに用いられる光が非等方的な 分布を持つ場合、得られる像は、実際よりも 小さく観測される傾向のあることが知られ ている[8]. ピンホールが光源を見込む実効的 な角度は、次式のように書くことができる.

| 表 I:PXR を用いて得られたビームサイ | 「ス | 5 |
|-----------------------|----|---|
|-----------------------|----|---|

| Horizontal                | (µm)         | Vertical                  | (µm)         |
|---------------------------|--------------|---------------------------|--------------|
| $\sigma_{PXR,x(meas)}$    | $268 \pm 3$  | $\sigma_{PXR,v(meas)}$    | $553\pm9$    |
| $\sigma_{\text{pinhole}}$ | $75 \pm 0.1$ | $\sigma_{\text{pinhole}}$ | $75 \pm 0.1$ |
| $\sigma_{det}$            | $97 \pm 1$   | $\sigma_{det}$            | $97 \pm 1$   |
| $\sigma_{PXR,x}$          | $238\pm3$    | $\sigma_{PXR,v}$          | $539\pm9$    |
|                           |              |                           |              |

| 表 2 : OTR を用いて得られたビームサイス. |            |                        |            |  |  |  |
|---------------------------|------------|------------------------|------------|--|--|--|
| Horizontal                | (µm)       | Vertical               | (µm)       |  |  |  |
| $\sigma_{OTR,x(meas)}$    | $278\pm2$  | $\sigma_{OTR,y(meas)}$ | $616\pm8$  |  |  |  |
| $\sigma_{\rm CCD}$        | $125\pm 6$ | $\sigma_{\rm CCD}$     | $125\pm 6$ |  |  |  |
| $\sigma_{\text{OTR},x}$   | $248\pm4$  | $\sigma_{OTR,y}$       | $603\pm8$  |  |  |  |

$$\sigma'_{\text{view},s} = \frac{\sigma_{\text{OTR},s}}{d_1}.$$
 (6)

ビームの角度拡がりが、この値よりも大きけ れば,光の放出は等方的であるとみなすこと ができる. (6)式から,  $\sigma'_{view,x} = 0.59 \text{ mrad}, \sigma'_{view,y}$ = 1.4 mrad と求められる. 本実験では, ビー ムの角度拡がりは、 $\sigma'_{beam,x} = 0.40$  mrad,  $\sigma'_{beam,y}$ = 0.46 mrad であった. このように、 $\sigma'_{\text{beam.x}}$ は  $\sigma'_{viewx}$ とほぼ等しい値であった.しかし,  $\sigma'_{beam,y}$ は $\sigma'_{view,y}$ よりも小さい値であったため に、非等方性の効果により、 $\sigma_{PXR,v}$ は  $\sigma_{OTR,v}$ よりも小さい値になったと考えられる. より 厚い結晶を用いれば、多重散乱により、ビー ムの角度拡がりを増加させ、非等方性の影響 を緩和することができると考えられる.また, 厚い結晶の使用は、PXR の収量を増加させる (測定時間を短縮させる)ことにもつながる. このように、本研究により、ピンホール法の 原理の検証実験に成功したといえる.

(3) フレネルゾーンプレート法

まず,予備的実験として,フレネルゾーン プレート1枚のみを用いて,PXRの集束を試 みた.しかし,研究期間内に,ビームプロフ ァイルの測定まで行うことはできなかった. 主要な実験装置の構築はほぼ終了しており, 今後も測定を継続する予定である.

# 参考文献

- [1] H. Loos *et al.*, Proc. of FEL08, 485 (2008).
- [2] 原徹ら, 第 8 回日本加速器学会年会プロ シーディングス, 55 (2011).
- [3] L.G. Sukhikh, S.Yu. Gogolev, A.P. Potylitsyn, Nucl. Instrum. Methods A 623, 567 (2010).
- [4] Y. Takabayashi, T. Kaneyasu, Y. Iwasaki, Nuovo Cimento C 34 (4), 221 (2011).
- [5] Y. Takabayashi, Phys. Lett. A 376, 2408 (2012).
- [6] Y. Takabayashi, K. Sumitani, Phys. Lett. A 377, 2577 (2013).
- [7] Y. Takabayashi, A.V. Shchagin, Nucl. Instrum. Methods B 278, 78 (2012).
- [8] P. Elleaume, C. Fortgang, C. Penel, E. Tarazona, J. Synchrotron Rad. 2, 209 (1995).

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計3件)

①<u>Y. Takabayashi, K. Sumitani</u>, "New method for measuring beam profiles using a parametric X-ray pinhole camera", Phys. Lett. A **377**, 2577-2580 (2013), 査読有 DOI:10.1016/j.physleta.2013.07.035

②<u>Y. Takabayashi</u>, K.B. Korotchenko, Yu.L. Pivovarov, T.A. Tukhfatullin, "Channeling and parametric X-ray studies at the SAGA Light Source", Nucl. Instrum. Methods B **315**, 105-109 (2013), 查読有

DOI:10.1016/j.nimb.2013.02.024

③<u>Y. Takabayashi</u>, "Parametric X-ray radiation as a beam size monitor", Phys. Lett. A **376**, 2408-2412 (2012), 査読有 DOI:10.1016/j.physleta.2012.06.001

## 〔学会発表〕(計2件)

①<u>Y. Takabayashi</u>, K.B. Korotchenko, Yu.L. Pivovarov, T.A. Tukhfatullin, "Channeling and parametric X-ray studies at the SAGA Light Source", ICACS25, 2012 年 10 月 23 日, Kyoto, Japan.

②<u>Y. Takabayashi, K. Sumitani</u>, "Development of a Beam Profile Monitor Using Parametric X-ray Radiation", Channeling 2012, 2012年9月27日, Alghero, Italy.

6. 研究組織

(1)研究代表者
高林 雄一(TAKABAYASHI, Yuichi)
九州シンクロトロン光研究センター・加速
器グループ・副主任研究員
研究者番号:50450953

(2)研究分担者

隅谷 和嗣(SUMITANI, Kazushi)
九州シンクロトロン光研究センター・ビームライングループ・副主任研究員
研究者番号:10416381