科学研究費助成事業

科研費

研究種目:挑戦的萌芽研究 研究期間: 2012 ~ 2014 課題番号: 24656327 研究課題名(和文)自立する砂を用いたCO2エコストラクチャーの創生と展開

研究課題名(英文)Generation and Development of CO2 Eco-Structure by Using "Self-Standing Sand"

研究代表者

機関番号: 32657

今川 憲英(IMAGAWA, NORIHIDE)

東京電機大学・未来科学部・教授

研究者番号:10328510

交付決定額(研究期間全体):(直接経費) 3,100,000円

研究成果の概要(和文):"自立する砂"を新構造素材として開発することによって、「砂上の楼閣」ならぬ"砂の空間構造"を創生しようとする正に挑戦的基礎研究を推進させてきた。新素材は、砂にCO2を注入することで構造強度を 確保し、ある応力レベルの構造物を対象とした場合には、鉄筋を使用することなく短い施工期間で構造物を構築できる 特徴を有する。

「新素材の開発は、混合する試薬の種類によって、Typel~III まで行われた。その成果をもとに、素材の特性を生かした緊急避難住宅への適用を目指し、その構造設計指針のさくていをするための基礎的解析を進めた。特に、耐震性を 考慮するために地震応答解析によるデータを収集した。

研究成果の概要(英文): Development of a new ecological structural material that is essentially made of sand and absorbs carbon dioxide was challenged. Starting from Type I our development has now expended to Type III in order to maintain structural strength and water resistance. Spatial structure (Top-Shell) using acombination of T-type units by our new structural material was proposed as a temporary housing for refuge from earthquakes. A simple structural design method for determining the scale of T-type units based on allowable stress design was proposed through an earthquake response analysis on the finite element model.

研究分野: 建築構造設計

キーワード: エコストラクチャー 構造素材 2酸化炭素排出削減 自立する砂 無筋構造 緊急避難住宅 空間構 造

1.研究開始当初の背景

構造物の構築は、それを構成する素材の開 発に大きく依存して進展を遂げてきた。今ま で、"砂"を構造素材とする考えは非常に少 ない。そこで、基本的には砂に CO2 を注入す ることで"自立する砂"が構成できることに 着目する正に「挑戦的萌芽」研究として独創 的である。さらに、構造素材としての特性が 確保できれば、短期間で施工できる構造物の 創生が期待される。特に、緊急性を有する避 難住宅への適用が考えられる。この展開に対 しては、CO2 排出削減にも大きく寄与する。 2.研究の目的

"自立する砂"が構造素材として使用できる ためには、構造強度が確保されなければなら ない。さらに、構造物への適用に際して、耐 水性・耐候性・耐火性当の検討も必要である。 そこで、素材の開発および空間構造物の一種 である"トポシェル"への新素材の適用を意 図した構造設計指針の策定を本研究の目的 とした。

3.研究の方法

新素材開発では、構造強度等の特性を改良 するために、砂に加える試薬の検討はシリン ダー試験体を作成して実験により行なった。 試薬の種類およびその配合率の組み合わせ に対応して、Type ~ とよび、圧縮試験、 耐水試験を行い、データを収集した。特に、 圧縮強度を確保するために、本体にエポキシ 樹脂を含浸することも行った。さらに、この 素材を用いて、構造物に適用するためのT型 ユニット模型を作成して、4点曲げおよび引 っ張り試験を行い接合部の挙動を把握した。 これらの成果に基づき、T型ユニットによる トポシェル形式による緊急避難住宅への展 開を意図して、その有限要素モデルを用いて 地震応答解析を実施した。

4.研究成果

"自立する砂"を用いた新構造素材の開発と 新素材による空間構造の創生を目指してそ の基礎的な研究を継続してきた。その過程で 得られた研究成果を(1)素材開発と(2) 空間構造の創生に分けて以下に記述する。

(1)新構造素材の開発

「新素材」の性質についてその概略を述べる。 新素材の原料には、鋳物の型に使われる「酸 化珪砂(Sio2)」に水ガラスを加えたものを用 いる。これに二酸化炭素を注入すると化学反 応を伴って瞬時に硬化し、自立した構造部材 となる。硬化時間は 100mm²当たり約 20 秒で あり、コンクリートの 1/10 以下の時間で硬 化するという特徴を有する。これを基本とし、 この素材の材料特性を改良するために試薬 を加え、硬化後もエポキシ樹脂を含浸させる ことによって以下の表1に示す特性からType ~ と呼び開発を続けてきた。

	表 Type ~
Туре	珪砂 + 水ガラス + CO2
Туре	Type + エポキシ樹脂含浸
Туре	Type +カルシウム系試薬
T	

Туре

図1に、材齢別圧縮応力度の分布詳細を示 す。図1より内部、外部の全試験体の最大応 力度と最小応力度の差を比較すると、内部応 力度差 3.11[N/mm²]、外部応力度差 4.36[N/mm²]となり、このように外部の応力 度差は大きい。各材齢 15 体ごとの、圧縮応 力度差の平均値でも、内部応力度差 1.97[N/mm²]と集中しているのに対し、外部 応力度差 2.28[N/mm²]と応力度差が大きい。 この事から内部常温養生に比べ、外部養生は、 圧縮応力度の分布にばらつきが大きいと言 える。天候による湿度や温度の影響であると 考えられる。

図2に、養生環境で比較する材齢別圧縮応 力度を示す。材齢1週間までは、圧縮応力度 の分布が上昇しているのに対して、材齢1週 間と2週間を比較すると、圧縮応力度の分布 に上昇は見られず安定している。この事から、 材齢1週間以降の試験体の圧縮応力度が安

本研究の試験結果から、材齢1週間以上の試 験体の圧縮強度が安定する事がわかった。よ って、珪砂の圧縮試験を行う際に、材齢1週 間以上の試験体を使用する事が適している。

Type

圧縮強度試験、曲げ強度試験、せん断強度 試験の結果をグラフにし、図 3-1~3 に示す。

エポキシ樹脂(A-531)の含浸注入の結果か ら、各強度(圧縮強度・曲げ強度・せん断強 度)を決定した(表2)。本試験の目的でもあ る炭化硅砂に対してどれくらい性能が向上 したのか、また一般的建築素材であるコンク リートに対しどの程度異なるのかの比較を 行った。炭化硅砂に対し圧縮強度では約10 倍、曲げ強度に至っては約68倍の向上が確 認された。またコンクリートに対しては、圧 縮強度がほぼ同等、曲げ強度・せん断強度で は3倍という結果を得た。

表 2 材料強度

	圧縮強度 [N/mm ²]		曲げ強度 [N/mm ²]		せん断強度 [N/mm ²]	
CO2エコストラクチャー	20.9		20.5		7.4	
炭化硅砂(自立する砂)	2.7		0.3		-	
コンクリート(Fc=21)	21.0		7.0		3.0	
レンガ	15.0		4.1		2.1	

Type

・第一回配合比の検討

試験体を製作するに当たり使用する珪砂、 水ガラス、水、カルシウム系試薬の配合の割 合、その混合の手順を図4に示す。

図4 配合の割合と手順の一覧

図5 破壊強度・材令グラフ

圧縮強度低下の原因として混合材料の H₂0 が薬品と反応しきらず、試験体内部に残留し たからと考える。H₂0 は CaSio₂の重合反応促 進のために適量必要だが、量が多く CaSio₂ との反応が不完全ならば水ガラスと反応し てしまい素材としての強度低下を招く事に なる。また、養生期間を経て圧縮強度が上昇 した理由として、残留した未反応のH₂0 が成 型後ゆっくりと CaSio₂ と重合反応を起こし たため、もしくは残留した H₂0 が時間を経て 蒸発したためと推測する。

・第二回配合比の検討

カルシウムシリケートの加水分解を進め る為、珪砂の攪拌時期を遅らせて図6に示す ような8通りの配合手順で圧縮試験を行った。

6	Step1 Step2 Step3 Step4 Step4 Step5 Step7 Step7 Step7 Step3 Step4 Step4 Step5 Step7 Step3 Step4 Step3 Step4 Step3 Step3 <t< th=""></t<>
7	Ca シリケート 6.3g Step1 Step2 Step3 Step4 Step5 Step5 Step7 展示 次(半量) 7.9g 原井 220.0g 7.9g
8	Ca シリ ケート 6.3g 水 (半量) 7.5g Step1 (第7) Step2 Step3 (第7) Step5 Step5 Step7 水(半量) 7.5g 第月 1100

図6 配合手順一覧

本実験では混合材配合の主に混合手順を 変更し試験体を作製、圧縮試験と耐水試験を 行った。実験結果より6番の配合手順方法で 破壊荷重9.16[kN],応力度4.7[N/mm²]の結果 が得られた。各配合手順に対する特性を表3 に示す。

配合手順	応力度 [N/mm ²]	施工性	均質性
1	1.5		
2	1.8		
3	2.2	×	
4	2.0		
5	2.1		
6	4.7		
7	3.7		
8	2.5		

圧縮強度については6と7番の配合手順が 良い。圧縮強度が向上した理由として考えら れる事は、カルシウムシリケートの加水分解 を進めるために必要な水の量が 10g、14g と 多めに配合されている事と、水を配合してそ の後水ガラスを配合するとカルシウムシリ ケートの重合が進みすぎ硬化速度が上がり、 固定化が出来ないので水と水ガラスの配合 時期は遠ざけ攪拌を行った事と、水ガラスを 配合する前に炭酸カルシウムを配合すると、 水を吸収するためカルシウムシリケートの 重合が進まず強度が出ないので炭酸カルシ ウムは水ガラスの後に配合をする事と考え られる。耐水性に関しては図7に示すように Type は自壊を起こさず、Type からある程 度の変化は確認できる。しかし、試験体を水 へ入れると白く濁り自壊はしないものの表 面の砂が少し崩れる事が分かった。

図 7 耐水性実験

(2)新素材による空間構造の創生解析モデル

新素材による空間構造物の創生として、 緊急避難住宅を想定した。図8に示すよう な開口部を1つとした"トポシェル"とよ ぶ構造形式を用いた。モデルの高さは 3150mm,開口部の高さは2250mm とした. また,この解析モデルは図9のようなT型 のユニットを組み合わせることにより構成 されている.ユニットの高さは450mm,ユ ニット同士の接合幅は120mm とし,ウェブ とフランジは同じ厚みとしている.

図9 T型ユニット

解析結果

設計式を提案するにあたり構造の安全性 評価は, 強度および剛性の2つの観点から検 討することとした.ここで強度の評価とは, 地震応答解析により得られた各応力度が,新 素材の各応力度を上回らないこととした.な お本研究の特徴は動解析による設計手法の 提案であることから,荷重(外力)の対象は 地震力であり,新素材の各応力度は短期のも のを対象とした,また剛性の評価は,地震応 答による変形について弾性範囲であること を考慮し,軒部分での変形において 1/200 以 下とした.具体的には,本研究でのモデルの 軒高が 3150mm であり, その 1/200 である 15.75mm を変形の上限値とした.上記で設定 した条件に基づき,5種類の地震波に対する 地震応答解析を実施した,解析の対象とした モデルは,柱の分割角度を変更し正多面体の 頂点の数が異なる場合と,直径を変化させ空 間の大きさが異なる場合とした.合計 80 パ ターンのモデルについて解析を行った.な お本研究で提案する構造物の目的から,屋根 や壁は比較的簡易に施工できる必要がある ため,直径の最大を15mと設定した.80パ ターンのモデルに対してウェブとフランジ の厚みを変化させ、各地震波の応答が許容値 以下となる最小の部材幅を決定した.

設計式の提案

本研究では変位と応力度の2つの要素によ り解析をしている.ここでは,応答変位に着 目した場合の設計式と応力度に着目したと きの設計式の2つの式を提案し,より安全な 構造物となるよう配慮した.

・応答変位による手法

地震応答の最大変位が許容値以下となる ときのモデルの分割角度と厚みの関係を式 で表すと次式となる.

y = (1.3 | - 1.0) d

切片 = 63 0.8 1

ここで, y は部材の厚み[mm], I は直径[m],

d は分割角度[deg]を表す.さらにこの2式 を加法結合すると,変位に基づく設計式が次 式の通りとなる.

y = (1.3 | - 1.0) d + (63 - 0.8 |)

なお,この式により設計した構造物に対する, いずれのモデルにおいても安全な結果とな っていることが分かった.

・曲げ応力度による手法

次に同様の方法で曲げ応力度について検 討した結果を以下の設定式として提案した。 y = (3.0 | - 3.6) d + (128.8 - 1.4 |)

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 0件)

[学会発表](計 5件) D.AKAIWA,<u>N.IMAGAWA,N.TOSAKA;</u> Development of New Eco-Structural Materials Serendipity between Architecture and Chemistry. IASS WORKING GROUPS 12+18 International Colloquium 2015, 2015.4.11,東京電機大学(東京都足立 区)

<u>N.IMAGAWA</u>,Y.IKEDA,R.ENDOU,<u>N.TOSAKA</u>; Structural Design Method on Topo Shell Constructed with New Material, IASS WORKING GROUPS 12+18 International Colloquium 2015, 2015.4.12,東京電機大学 (東京都足立区)

<u>N.IAMGAWA;</u>Structural Design of Double Topological Shell Using Inverted T CO2 Eco-Structure Units, IASS International Symposium 2013, 2013.9.26, Wroclaw Univ. of Technology (Wroclaw, Poland)

〔図書〕(計 0件)

6.研究組織

(1)研究代表者
今川憲英 (IMAGAWA Norihide)
東京電機大学未来科学部・教授
研究者番号: 10328510

(2)研究分担者
登坂宣好 (TOSAKA Nobuyoshi)
東京電機大学未来科学部・客員教授
研究者番号: 00059776

(3)連携研究者 なし

(4)研究協力者
遠藤龍司 (ENDOU Ryuji)
職業能力開発総合大学校能力開発院・教授