# 科学研究費助成事業

## 研究成果報告書



平成 26 年 4月 30 日現在

| 機関番号: 1 1 3 0 1                                                                         |
|-----------------------------------------------------------------------------------------|
| 研究種目: 挑戦的萌芽研究                                                                           |
| 研究期間: 2012 ~ 2013                                                                       |
| 課題番号: 2 4 6 5 6 3 9 9                                                                   |
| 研究課題名(和文)Mg基非晶質合金を負極活物質とした高性能金属 - 空気電池の創製と発電制御因子の解明                                     |
| 研究課題名(英文)Power Generation Property of Metal-Air Battery using Mg-based Amorphous Alloys |
| 研究代表者                                                                                   |
| 山浦 真一(YAMAURA, SHIN-ICHI)                                                               |
|                                                                                         |
| 東北大学・金属材料研究所・准教授                                                                        |
|                                                                                         |
| 研究者番号:5 0 3 2 3 1 0 0                                                                   |
| 交付決定額(研究期間全体):(直接経費) 3,000,000 円 、(間接経費) 900,000 円                                      |

研究成果の概要(和文):本研究では、Mg基非晶質合金に着目し、金属 - 空気電池用の新しい負極活物質の作製を試みた。種々のMg基急冷合金を作製し、Mg-Ca-AI三元合金で非晶質合金を作製可能であることを見出した。得られた急冷非 晶質合金を金属 - 空気電池に組み込み、その発電特性を調べた。その結果、Mg-Ca-AI急冷非晶質合金では従来材である 純Mg材よりも高い放電容量が得られた。この値はリチウムイオン電池の放電容量を大幅に上回り、Mg非晶質合金が金属 - 空気電池負極材としての可能性を有していることを示した。

研究成果の概要(英文): In this study, power generation property of metal-air battery using Mg-based amorp hous alloys was investigated in comparison with pure Mg. Various Mg-based amorphous alloys were prepared b y rapid quenching and melt-spun Mg-Ca-AI ternary alloy was found to be in amorphous state. Power generatio n of a metal-air battery using the Mg-based amorphous alloy was a little better than that using a conventi onal Mg sheet. It was found that the Mg-based amorphous alloy can be a good candidate for metal-air batter y in future.

研究分野:工学

科研費の分科・細目: 材料工学・ 構造・機能材料

キーワード: 非晶質 空気電池 マグネシウム 燃料電池 アモルファス

#### 1. 研究開始当初の背景

マグネシウム(Mg)は地球上に豊富に存在 し、例えば国内の鉱山にも未利用の資源が存 在し、また、海水 1kg 中にも Mg が約 1.3g 含 まれており、周辺を海で囲まれた我が国では、 事実上、Mg は無尽蔵の資源と位置付けるこ とが出来る。最近、原子力発電の縮小や石油 代替エネルギーの必要性など地球環境・エネ ルギー問題の解決のため、この豊富な Mg 資 源量に着目した Mg-空気電池に期待が集ま っている。この電池は電解液(例えば塩水) 中に Mg が溶出(Mg→Mg<sup>2+</sup>+2e<sup>-</sup>)することで起 電力を生じており、この反応は Mg 負極の腐 食・溶解に他ならない。ところが従来の Mg -空気電池は、負極活物質 Mg に不働態皮膜 が生じ、溶解発電反応が途中で停止してしま うなど、未だ多くの問題を抱えている。

そこで、本研究では Mg 負極活物質を非晶 質化することによって、より大きな発電容量 が得られるのではないかと考えた。

一般的に非晶質合金は、同じ組成ならば結 晶合金よりも耐食性が高いとされている。こ れは、非晶質合金委は結晶粒界や転移などの 欠陥が存在せず、表面も均質一様であるため、 不働態皮膜も均質一様で強固となり、高い耐 食性を発現するからであると考えられてい る。しかし、非晶質合金の内部はランダム原 子配列構造を有しており、内部エネルギーが 結晶財よりも高い準安定状態である。従って、 非晶質合金は不働態皮膜が生成しなければ 非常に腐食され易い、溶解され易い材料であ るとも言える。そこで適切な組成の Mg 基非 晶質合金であれば、溶解速度が制御され、効 率良く大きな発電容量が取り出せるのでは ないかと着想した。

#### 2. 研究の目的

本研究では、地球上に豊富な資源量として 存在する Mg を用いた Mg-空気電池に着目 し、その Mg 負極材を非晶質化することによ って放電容量がどのように変化するかにつ いて調べた。

## 3. 研究の方法

(1)単ロール液体急冷凝固法による非晶質合 金試料の作製

本研究では、非晶質化の手法として主に単 ロール液体急冷凝固法を用いた。図1に本研 究で用いた単ロール液体急冷凝固法の模式 図を示す。本法は試料合金を石英ノズルに入 れて高周波炉によって溶解し、高速回転する ロール表面に溶湯を噴出して細い薄帯状試 料を作製する手法であり、非晶質材料を作製 する方法としては一般的なものである。急冷 凝固法を用いて作製される合金試料は厚さ 約 30 ミクロン程度の薄帯状であり、本研究 では主にこれを負極材評価用資料として使 用した。得られた試料は、X線回折(XRD)法 によりアモルファス単相であることを確認 し、さらに示差走査熱分析(DSC)法により結



図1 単ロール液体急冷装置の(a)模式図およ び(b)装置写真

晶化温度(Tx)を調べた。

(2)Mg 試料の金属-空気電池への適用と発電 特性評価

本研究で作製した Mg 基急冷合金試料を負 極材として用いた金属-空気電池セルを作 製し、その発電特性を調べた。金属-空気電 池セルの模式図を図2に示す。負極には本研 究で作製した Mg 基合金や比較材の Mg 板を 用い、正極は多孔質カーボンに活性炭粉末を 塗したものを使用した。正極・負極間の電解 液の保持には不織布を用いた。また電解液に は 18% NaCl 水溶液(塩水)を使用した。正極・ 負極間には 10Ω の抵抗を接続し、その両端 に生じる電圧をデータロガーを用いて測 定・記録した。試料によっては、XRD 分析を 行い、発電後に電解液中に残った沈殿物の同 定を行った。



図2 Mg 試料-空気電池セル構成

### 4. 研究成果

(1)単ロール液体急冷凝固法による非晶質合 金試料の作製

通常、純 Mg などの純金属単体の非晶質化 は困難であるため、第二、第三元素を添加し た多成分系合金としてのみ Mg 基非晶質合金 を得ることが出来る。そこで本研究では、Mg 基合金急冷試料として、Mg-Cu-Y、 Mg-Cu-Y-Pd、Mg-Ni-Pd、Mg-Ca-Al 合金など を作製した。本報告では代表的なものとして、 Mg-Ca-Al 合金について特に説明する。

図 3 に Mg<sub>85</sub>Ca<sub>10</sub>Al<sub>5</sub> 合金急冷薄帯の外観写 真を示す。厚さ約 30µm、幅約 1mm の急冷薄 帯を得た。

図4にはこの薄帯試料のXRD 図形を示す。



図3 Mg85Ca10Al5合金急冷薄帯の外観

図から明らかなように、低角度側の両面テー プと見られるピーク以外には明瞭なピーク は見られず、非晶質(アモルファス)相を示 すブロードなハローパターンのみが見られ、 本試料が非晶質単相であることが示された。

さらに図 5 には、 $Mg_{85}Ca_{10}Al_5$ 非晶質合金急 冷薄帯の DSC 曲線を示す。昇温速度 40K/s、 Ar 雰囲気中での測定である。測定の結果、  $Mg_{85}Ca_{10}Al_5$  非晶質合金の結晶化温度は Tx=144.9℃であり、かなり温度が低く不安定 であることが分かった。



図4 Mg85Ca10Al5 合金急冷薄帯の XRD 図形



図 5 Mg<sub>85</sub>Ca<sub>10</sub>Al<sub>5</sub> 非晶質合金の DSC 曲線

(2)Mg 試料の金属-空気電池への適用と発電 特性評価

次に、本研究で作製した Mg 合金試料を負 極材として用いて図2に示したような空気電 池セルを作製し、電極間の電圧を測定・記録 した。測定は全て常温で行った。

図 6 には MgssCa<sub>10</sub>Als 非晶質合金急冷薄帯 試料を負極材として用いた場合の、発生電圧 の時間変化を示す。本測定では、試料は 12.56mg 使用し、不織布上に並べて背面から SUS304 板で押さえて負極とした。図 6 から 明らかなように、発生電圧は最大約 1.1V を 示し、その後徐々に低下し、約5分程度で放 電を終了した。発生電圧(V)と抵抗を流れる電



図6 Mg<sub>85</sub>Ca<sub>10</sub>Al<sub>5</sub>非晶質合金を負極材とした 場合の放電曲線



流(I)から電力を求め、積分することによって 総発生電力を計算した。その結果、放電量は 325.5mWh/g であった。一方、比較材として Mg 板を負極材として使用した場合の放電曲 線を図7に示す。試料重量は199.1mg であり、 薄帯試料に比べて発電は長時間持続した(図 6の横軸の単位は秒(s)であるのに対し、図7 の横軸の単位は時間(h)であることに注意)。 これらの Mg85Ca10Al5 非晶質合金および Mg 板を負極材とした場合の発電量をグラム重 量当たりの値に規格化すると、それぞれ 325.5mWh/g および 319.2mWh/g であり、 Mg85Ca10Al5 非晶質合金の発電量が僅かに上 回っていた。Mg85Ca10Al5 非晶質合金は Mg 含 有量が 85 原子%であるものの、Mg板(Mg100 原子%)よりも高い放電量を示すことが分か った。この値は一般的なリチウムイオン電池 の放電容量約 200mWh/g を大幅に超え、Mg 基非晶質合金を用いた金属-空気電池の可 能性を示すことが出来た。

一方、他の Mg 基合金では、Mg<sub>90</sub>Ni<sub>5</sub>Pd<sub>5</sub>合 金急冷薄帯試料を負極材とした場合の発電 量は、74.3mWh/g と極めて少なかった。 Mg-Cu-Y、Mg-Cu-Y-Pd 合金の場合も極めて少 ない発電量しか示さなかった。本研究の中で は Mg<sub>85</sub>Ca<sub>10</sub>Al<sub>5</sub> 非晶質合金急冷薄帯試料が最 も高い発電量を有し、負極材としての可能性 を示したものの、Mg 空気電池の理論容量に は及ばなかった。この点は今後、正極材の最 適化が進めば、改善されると思われる。

また、興味深い実験事実として、 Mg85Ca<sub>10</sub>Al5合金や純Mgの場合は、発電実験後の電解液の液色は白色であった(図8左図) 一方、Mg90Ni5Pd5合金を使用した場合(図8 右図)、発電後の電解液は黒色であり、黒色 沈殿物が生成した。次に黒色沈殿物を回収し、 SEM 観察や XRD 測定を行った。



図 8 Mg<sub>85</sub>Ca<sub>10</sub>Al<sub>5</sub> 合金(左)と Mg<sub>90</sub>Ni<sub>5</sub>Pd<sub>5</sub> 合金 (右)の溶解後の電解液色の比較



図 9 Mg<sub>90</sub>Ni<sub>5</sub>Pd<sub>5</sub>合金溶解後の黒色沈殿物の SEM 像



図10 Mg90Ni5Pd5合金溶解後の黒色沈殿物の XRD 図形

図9に $Mg_{90}Ni_5Pd_5$ 合金が電解液中で溶解する際に生成した黒色沈殿物のSEM像を示す。 図を見ると、サブミクロンレベルの微細粒が 生成していることが分かる。

図 10 には  $Mg_{90}Ni_5Pd_5$ 合金溶解後の黒色沈 殿物の XRD 図形を示す。生成物の大半は水 酸化マグネシウム( $Mg(OH)_2$ )であったが、そ の中に、金属(Pd、Ni)微粒子からのものと思 われるブロードなピークも見られた。  $Mg_{90}Ni_5Pd_5$ 合金の溶解は、脱合金化によるNi、 Pd 金属微粒子の作製法としても有効である ことが示唆された。 5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計0件)

〔学会発表〕(計1件)
①<u>山浦真一</u>、Mg 基非晶質合金を負極活物質とした金属空気電池の発電特性、日本金属学会春季大会、2014年3月21日、東京

〔産業財産権〕(計0件)

6.研究組織(1)研究代表者山浦 真一(YAMAURA SHIN-ICHI)

東北大学・金属材料研究所・准教授 研究者番号:50323100