科学研究費助成事業

研究成果報告書

科研費

平成 28年 9月 14 日現在

機関番号: 12601 研究種目: 挑戦的萌芽研究 研究期間: 2012~2015 課題番号: 24658060 研究課題名(和文)栄養進化説の検証

研究課題名(英文)Examination of possible mutation bias due to nutritional conditions

研究代表者

藤原 徹(FUJIWARA, Toru)

東京大学・農学生命科学研究科・教授

研究者番号:80242163

交付決定額(研究期間全体):(直接経費) 3,100,000円

研究成果の概要(和文): ホウ素過剰処理で十分に過剰害が出た植物の後代の個体についてゲノム配列決定を行い、 変異の頻度を測定した所、ホウ素過剰で栽培した植物は通常の植物と大きな違いが無く、また報告されている頻度とも 大きな違いは見られなかった。挿入変異はホウ素過剰処理で増えている可能性は見いだされたが、効果は劇的ではなか った。変異が挿入された遺伝子のリストには特にホウ素の輸送や応答に関与すると思われるものは含まれていなかった が、塩基欠損が見られた遺伝子の中にはホウ素が結合するペクチンの合成に関与する可能性のある遺伝子が含まれてい た。

研究成果の概要(英文): High boron treatment induces DNA damage. The present study aimed to examine effect of high boron treatment on introduction of mutation in Arabidopsis genome. Arabidopsis have been successively cultivated for several generations with or without high boron treatment. High boron treated plants exhibited severe necrosis, indicating the treatment was done properly. Genome sequence analysis of the successive generation indicated that the rate of mutation per generation is not significantly different between lines cultivated under high boron and lines cultivated under the control condition. There was a tendency that high boron treatment induce deletion more frequently. The list of the gene to which the mutations were introduced was not biased to the genes related to responses to boron conditions.

研究分野: 植物栄養学

キーワード: 栄養進化 変異 ホウ素過剰 DNA損傷

1.研究開始当初の背景

最近の研究によって、ホウ素過剰ストレス が植物の根に DNA 損傷を蓄積させることが明 らかになった(Sakamoto *et al*, 2011)。DNA の損傷はその修復過程において遺伝情報の 変異を伴うことから、この発見は土壌中の栄 養環境が植物のゲノム安定性に影響を与え る可能性を示唆している。

自然選択説による進化の説明では突然変 異は無目的に生じ、適応度の低い遺伝型が淘 汰されるとされている。この説に基づくと、 ホウ素のような必須栄養の環境条件は進化 の過程において選択圧として働いてきたと 考えられる。

不利な栄養環境が DNA 損傷を引き起こすと いう発見をもとに、不利な栄養環境が選択圧 としてだけではなく、ゲノムの安定性を変化 させることで植物の進化の速度あるいは方 向性に影響を与えてきた可能性を追究する ことは重要である。

2.研究の目的

ホウ素過剰ストレスがDNA 損傷を蓄積させ るという現象はシロイヌナズナの根におい て発見されたが、その他の組織においてこの 現象の有無は不明である。ある変異が後代に 伝播するには、生殖細胞系列に変異が生じる 必要があり、その頻度にホウ素過剰ストレス が影響するかどうかは未知である。本研究で は栄養環境がゲノムの変異蓄積に影響する 可能性を検証するため、ホウ素過剰ストレス 条件下と通常条件下とで栽培されたシロイ ヌナズナの自然変異発生頻度に違いが見い だされるかどうかを調査する。また、変化が 見られた場合、どのような遺伝子、あるいは 染色体領域に変化が起きやすいのかを調査 することを目的とする。

3.研究の方法

(1) 異なる栄養条件における自然変異蓄積 系統の作成

シロイヌナズナの自殖継代

初めに1個体から得られる種子群を0世代 目とし、その種子群を通常区、ホウ素過剰区 の2処理区で自殖継代して行った。各個体に ついて1個体の後代を得て、1対1の自殖継 代を繰り返すことで、自然変異を蓄積させた。

栽培条件 栽培は22、長日条件(16時間明期,8時間 暗期)の温室内で行い、培地にはロックウー ルとバーミキュライトを用いた。通常区では イオン交換水と必須栄養素をすべて含む MGRL 水耕液 (Fujiwara et al.,1992)による 潅水を行い、ホウ素過剰区ではそれに加えて 1 mM のホウ酸水溶液を抽苔前に 2-3 回、葉 の黄化が見られるまで与えた。

(2) 自然変異蓄積系統の変異検出

次世代シーケンサによる変異検出 親株に相当する0世代目と、自殖継代最終 世代の複数個体についてゲノムDNAを抽出し、 次世代シーケンサを用いたゲノムリシーケ ンスを行う。配列情報の取得には IIIumina HiSeq による 100 塩基読み取りのペアード エンド法を用い、情報量 4 G 塩基(シロイヌ ナズナゲノムの 30 倍)を取得した。次世代シ ーセンシングのためのライブラリ調製はシ ーケンス領域の PCR によるバイアスを避ける ため PCR フリー法を用いた。

次世代シーケンサによって得られた配列 情報の解析

次世代シーケンサによって取得されたリー ド情報は、前処理としてアダプター配列の除 去、リード品質によるフィルタリングにかけ た。次にショートリードのマッピングプログ ラムである Bowtie2 を用いてシロイヌナズナ ゲノム(TAIR10)をリファレンス配列として アラインメントを行った。得られたアライン メント結果に対して多型検出プログラム samtools (Li et al., 2011)を用いた一塩基 多型の検出、また構造多型検出プログラム pindel(Ye et al., 2009) を用いた塩基挿入 /欠損の検出を行った。検出された多型につ いて処理区間での変異発生頻度、発生場所の 比較を行った。また遺伝子領域内の変異につ いては遺伝子の機能の観点から処理区間で のバイアスの有無を検証した。

- 4.研究成果
- (1) 異なる栄養条件における自然変異蓄積 系統の作成

野生型株と、ホウ素過剰感受性の rpt5a-4株 について、単一個体から得られた種子群(0世 代目)を得た。それぞれの株について、通常 区、ホウ素過剰区の処理区それぞれにおいて 約 100 個体の栽培を行い、自殖によって1対 1の継代を行った(図 1)。最終的に野生型株 については7世代、rpt5a-4株については8 世代の継代を経た個体を得た。

図1. 通常条件およびホウ素過剰障条件で 栽培されたシロイヌナズナ(上)通常区 (下)ホウ素過剰区。ホウ素過剰区では典型 的なホウ素過剰障害である葉の周縁部の 枯死がみられる。

(2) 次世代シーケンサによるゲノム配列決 定

次世代シーケンサによる塩基配列データ 取得

8世代目の rpt5a-4株について、通常区およびホウ素過剰区それぞれにつき7個体ずつと、 親株(第0世代)の塩基配列情報を次世代シー ケンサによって取得した。いずれの系統についても4.3G塩基以上の情報が取得された。

配列取得領域の可視化

各系統から取得したデータに対して、一塩基 多型の検出対象とする染色体領域を定める ため、各領域におけるリード数の厚さ (depth)による領域のフィルタリングを行っ た。変異検出の確度を高めるため対象領域は 20リード以上の厚さのある領域し、反復配列 等に起因するミスアラインメントによる擬 陽性の変異検出を防ぐため、厚さが 60 リー ド以上の領域を除外した。結果として全ゲノ ム配列のうち 80%前後が解析対象領域となっ た(図 2)。

一塩基多型の検出と比較

フィルタリング後の染色体領域について多 型検出プログラム samtools を用いて一塩基 置換を検出した。検出された多型のうち、親 株(0 世代目)由来の変異(データベース上の リファレンス配列との差異)を除外するため、 複数の系統間で共通して検出された変異は 除外した。

変異個所数については、通常区とホウ素過 剰区の間に統計的に有意な差は見いだされ なかった(図3)。変異個所の染色体上におけ る位置を図4に示す。

Chr 1 Chr 2 Chr 3 Chr 4 Chr 5

図 4.一塩基変異個所の染色体上の分布 7 系統で検出された一塩基置換変異をまとめ て示している。染色体構造上の黒い領域は セントロメア領域を表す。

塩基欠損・挿入の検出と比較 全染色体領域を対象に、構造多型検出プログ ラム pindel による欠損・挿入の検出を行っ た。変異個所数に関しては塩基欠損・挿入と もに処理区間に統計的に有意な差はみられ なかったが、塩基挿入に関してはホウ素過剰 区において頻度が高い傾向がみられた(図 5)。 染色体上の変異個所の分布を図6に示す。

図 5 通常区とホウ素過剰区における塩基 欠損・挿入箇所数 各点は7系統の各条件 それぞれにおける塩基欠損・挿入箇所数を 表す。

図 6.塩基挿入・欠損箇所の染色体上の分布 7 系統で検出された塩基挿入・欠損位置を まとめて示している。染色体構造上の黒い 領域はセントロメア領域を表す。

遺伝子機能から見た変異発生のバイアス の評価

変異が遺伝子発現に与える影響を、多型のア ノテーションプログラム snpEff(Cingolani et al., 2012)を用いて推定した(表)。塩基 置換、欠損、挿入いずれの場合も6割以上の 変異が遺伝子間領域であったが、遺伝子機能 に影響を与えるミスセンス変異やフレーム シフト変異も見られた。しかしながら処理区 間での顕著な傾向の違いは見られなかった。 遺伝子領域内に変異が生じた遺伝子リスト を表に示す。これらの遺伝子リストに対して 処理区ごとに遺伝子オントロジー解析を行 ったが、変異の入った遺伝子の分子機能、生 体機能に有意な偏りは確認されなかった。

表 検出された多型の効果による分類.数値 は各処理区7系統で検出された変異個所の合 計を表す

塩基量換	通常	ホウ素過剰
3_prime_UTR_variant	1	0
5_prime_UTR_variant	0	1
intergenic_region	18	17
intron_variant	8	4
missense_variant	3	1
splice_region_variant&	0	1
intron_variant		
synonymous_variant	0	1

塩基欠損	通常	ホウ素過剰
3_prime_UTR_variant	2	0
frameshift_variant	0	1
intergenic_region	36	36
intron_variant	1	4

塩基挿入	通常	ホウ素過剰
3_prime_UTR_variant	0	1
5_prime_UTR_variant	0	1
frameshift_variant	0	1
intergenic_region	24	27
intron_variant	1	2
splice_donor_variant&	1	0
intron_variant		

表 遺伝子内に変異が検出された遺伝子 塩基置換が検出された遺伝子-通常区

遺伝子コー ド	遺伝子アノテーション
AT1G77480	Eukaryotic aspartyl
	protease family protein
AT1G70505	-
AT1G80490	TOPLESS-related 1
AT2G24070	Family of unknown function (DUF566)
AT3G57860	UV-B-insensitive 4-like
AT3G17340	ARM repeat superfamily
	protein
AT3G59660	C2 domain-containing
	protein / GRAM
	domain-containing protein
AT3G46830	RAB GTPase homolog A2C
AT4G04780	mediator 21
AT5G21105	Plant L-ascorbate oxidase
AT5G37560	RING/U-box superfamily
	protein
AT5G24260	prolyl oligopeptidase

	family protein
塩基量換 が検出された遺伝子- ホウ素過剰区	
遺伝子 コー ド	遺伝子アノテーション
AT1G09590	Translation protein SH3-like family protein
AT1G28420	homeobox-1
AT1G52180	Aquaporin-like superfamily protein
AT1G60780	Clathrin adaptor complexes medium subunit family protein
AT1G67060	-
AT2G41100	Calcium-binding EF hand family protein
AT3G06320	Ribosomal protein L33 family protein
AT5G48110	Terpenoid cyclases/Protein prenyltransferases superfamily protein

塩基欠損が検出された遺伝子-通常区

遺伝子コード	遺伝子アノテーション
AT1G78980	STRUBBELIG-receptor
	family 5
AT1G02890	AAA-type ATPase family
	protein
AT2G43865	-
塩基欠損 が検出	された遺伝子- ホウ素過剰区
遺伝子コー	遺伝子アノテーション
4	
AT1G14600	Homeodomain-like
	superfamily protein
AT1G54400	HSP20-like chaperones
	superfamily protein
AT2G36550	-
AT4G01770	rhamnogalacturonan
	xylosyltransferase 1
AT5G64810	WRKY DNA-binding protein 51

塩基插入が検出された遺伝子-通常区

遺伝子コ ード	遣伝子アノテーション
AT1G80070	Pre-mRNA-processing-splicin g factor
AT2G32160	S-adenosyl-L-methionine-dep endent methyltransferases superfamily protein
塩基挿入 が	検出された遺伝子- ホウ素通区
遺伝子コー ド	遺伝子アノテーション
AT1G08920	ERD (early response to dehydration) six-like 1
AT2G30933	Carbohydrate-binding X8 domain superfamily protein
AT3G42560	Pentatricopeptide repeat (PPR) superfamily protein

AT3G43270	Plant invertase/pectin
	methylesterase inhibitor
	superfamily
AT3G54060	-

まとめ

ホウ素過剰処理で十分に過剰害が出た植 物の後代について変異の頻度を測定した所、 通常の植物と大きな違いが無く、また報告さ れている頻度とも大きな違いは見られなか った。挿入変異はホウ素過剰処理で増えてい る可能性は見いだされ、ホウ素が DNA 損傷を 引き起こすことと対応している可能性が考 えられるが、効果は劇的ではなかった。変異 が挿入された遺伝子のリストには特にホウ 素の輸送や応答に関与すると思われるもの は含まれていなかったが、塩基欠損が見られ た遺伝子の中にはホウ素が結合するペクチ ンの合成に関与する可能性のある遺伝子が 含まれていた。全体としてはホウ素過剰によ ってホウ素過剰に関連する遺伝子に変異が 入りやすいというような傾向は見られなか った。

- 5.主な発表論文等 [雑誌論文](計 0件) [学会発表](計 0件) [図書](計 0件) [産業財産権] 出願状況(計 0件) 取得状況(計 0件)
- 6.研究組織

(1)研究代表者
藤原 徹(FUJIWARA, Toru)
東京大学・大学院農学生命科学研究科・
教授
研究者番号: 80242163