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研究成果の概要（和文）：行列・テンソルで表現される特徴量に対して２種の識別手法（行列識別及び特徴テンソル間
類似度）を提案した。提案法では行列識別器の高速な最適化方法を示し、訓練誤差と行列のランクを同時に最小化する
。得られる低ランク行列識別器は高い汎化性能を有するだけでなく、その識別重みは物理的に解釈することが容易とな
り更なる解析に資する。また、提案した類似度は特徴テンソル間での部分マッチングに基づき、特徴に内在する共通パ
ターンを自動的に抽出することができる。そのため、背景ノイズなどの変動に頑健に類似度を算出することが可能とな
る。各種画像認識実験において、これら提案法の有効性を定量的に確認した。

研究成果の概要（英文）：In this study, we have proposed two novel methods for classifying features 
represented in a form of matrix or tensor; one is a matrix classifier, and the other is a similarity 
measure between the feature tensors which is used for exemplar-based classification. The proposed method 
fast optimizes the matrix classifier by minimizing classification errors as well as a matrix rank to 
produce a low-rank classifier of high generalization performance. Such low-rank classifier also 
facilitates to physically interpret the classifier weights for further analysis. The proposed similarity 
measure is based on partial matching of pair-wise feature tensors. It automatically extracts common 
patterns shared by those feature tensors and thereby produces effective similarity in disregard of noisy 
background patterns. In the experiments on various visual recognition tasks, the proposed methods 
exhibited favorable performance.

研究分野：パターン認識

キーワード： パターン識別　特徴行列　特徴テンソル　部分マッチング
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min
Ww,Wh,b

1
2

tr(WwW⊤w)+ 1
2

tr(WhW⊤h )

+ 1
2

Cwtr(W⊤w LwWw)+ 1
2

Chtr(W⊤h LhWh)

+ C
∑

i

max
[
0, 1− yi {tr(W⊤h X i Ww) + b}

]
, (22)

where Lw, Lh are the matrices to measure the smoothness
and Cw, Ch are regularization parameters. For example, in
time-series (one-way), the matrix Lw is determined based
on tr(W⊤w LwWw) = ∑

t,r ∥ − wt−1,r + 2wt,r − wt+1,r∥22.
In this study, the regularization parameter Cw is set so as to
equally balance the spectral norms of the two matrices I and
Lw by Cw = 1/||Lw||s , (Ch = 1/∥Lh∥s for Lh), where ∥·∥s
denotes the spectral norm (the maximum singular value) of
a matrix. Then, the above formulation is rewritten to

min
W̄w,W̄h,b

1
2

tr(W̄wW̄⊤w)+ 1
2

tr(W̄hW̄⊤h )

+ C
∑

i

max
[
0, 1−yi {tr(W̄⊤h X̄ i W̄w) + b}

]
, (23)

where X̄ i = (I + Ch Lh)−
1
2 X i (I + Cw Lw)−

1
2 . (24)

This is the same as (6) except for the feature matrices
X̄ , and the optimization procedure described in Sect.3.2
is directly applicable to it. We finally obtain the smoothed
classifier weights by Wh = (I + Ch Lh)−

1
2 W̄h, Ww =

(I + Ch Lw)−
1
2 W̄w.

This smoothing regularization is somewhat a naive exten-
sion of the bilinear model. In the following sections (Sect.4
and Sect.5), we propose the two noteworthy extensions of
bilinear models by utilizing the proposed method (Sect.3.1,
3.2) as a basic optimization tool.

4 Heterogeneous Multiple Kernel Learning

By considering a kernel-based extension of the bilinear clas-
sifier, we naturally induce a novel multiple kernel learn-
ing (MKL), called heterogeneous multiple kernel learning,
which effectively integrates the inter and intra kernels among
various types of RKHS.

4.1 Feature Matrix for Kernelization

To kernelize the bilinear model, we introduce the kernels for
Ri j ! X⊤i X j ∈ Rw×w in (13). The optimized Σw works as
weights to integrate the multiple (w × w types) kernels of
Ri j into a new composite kernel which is fed into (13), as in
MKL (Lanckriet et al. 2004). In what follows, we consider
the kernel feature vector φic (c ∈ {1, · · · , w}) in the c-th
type of RKHS Kc which is derived from the feature xic and is

endowed with the kernel function kc: kc(xic, x jc) = φ⊤icφ jc.
Those vectors φic form the feature matrix along its (block-
)diagonal as

Xφ
i =

⎡

⎢⎣
φi1

. . .

φiw

⎤

⎥⎦ = diag(φi1, . . . ,φiw), (25)

whose column size is w. If we simply use X i = Xφ
i ,

the kernelized Ri j results in the diagonal matrix Ri j =
diag

{
k1(xi1, x j1), . . . , kw(xiw, x jw)

}
. In this case, we take

into account only the respective types of kernels in disregard
of the inter connections among those kernels, and the pro-
posed bilinear method (14) using this diagonal matrix Ri j

reduces to the MKL method by Varma and Ray (2007).
In order to exploit the relationships between the multiple

types of RKHSs, we define the feature matrix X by

X = ZXφ, (26)

where Z is a transformation matrix. For example, in case
that the RKHSs are all homogeneous with the identical kernel
function kc = k ∀c, the kernelized R can be simply obtained
as the dense matrix Ri j =

{
φ⊤icφ jd = k(xic, x jd)

}d=1,...,w

c=1,...,w
via Z = [I, . . . , I]. In this study, by effectively determining
Z, we establish the densely kernelized R even for multi-
ple types of RKHSs, namely multiple kernel functions, to
incorporate not only the intra kernels (in diagonal) between
the homogeneous RKHSs but also the inter kernels (in off-
diagonal) among the heterogeneous RKHSs, which induces
heterogeneous MKL (hMKL) as follows.

4.2 Heterogeneous Kernel Integration

The main concern in the hMKL is to construct kernels, espe-
cially for the off-diagonal elements of Ri j ; those are inter
kernels between the heterogeneous RKHSs, which is a novel
concept in this paper. We determine the transformation Z by

Z = [U1V⊤1 , . . . , UwV⊤w] = [K
− 1

2
1 Φ⊤1 , . . . , K

− 1
2

w Φ⊤w],
(27)

where Φc = [φ1c, . . . ,φnc] = V cΛcU⊤c (SVD). It leads to
the following form of the kernelized Ri j ,

Ri j
cd = φ⊤icV cU⊤c Ud V⊤d φ jd = k⊤ic K

− 1
2

c K
− 1

2
d kid , (28)

where K c is the c-th kernel Gram matrix using the kernel
function kc;

K c = {kc(xic, x jc)} j=1,...,n
i=1,...,n = Φ⊤c Φc = UcΛ

2
cU⊤c ∈ Rn×n,

(29)

K
− 1

2
c = UcΛ

−1
c U⊤c , (30)
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is directly applicable to it. We finally obtain the smoothed
classifier weights by Wh = (I + Ch Lh)−
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By considering a kernel-based extension of the bilinear clas-
sifier, we naturally induce a novel multiple kernel learn-
ing (MKL), called heterogeneous multiple kernel learning,
which effectively integrates the inter and intra kernels among
various types of RKHS.

4.1 Feature Matrix for Kernelization

To kernelize the bilinear model, we introduce the kernels for
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Ri j into a new composite kernel which is fed into (13), as in
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reduces to the MKL method by Varma and Ray (2007).
In order to exploit the relationships between the multiple

types of RKHSs, we define the feature matrix X by
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where Z is a transformation matrix. For example, in case
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function kc = k ∀c, the kernelized R can be simply obtained
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ple types of RKHSs, namely multiple kernel functions, to
incorporate not only the intra kernels (in diagonal) between
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The main concern in the hMKL is to construct kernels, espe-
cially for the off-diagonal elements of Ri j ; those are inter
kernels between the heterogeneous RKHSs, which is a novel
concept in this paper. We determine the transformation Z by

Z = [U1V⊤1 , . . . , UwV⊤w] = [K
− 1
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1 Φ⊤1 , . . . , K

− 1
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w Φ⊤w],
(27)

where Φc = [φ1c, . . . ,φnc] = V cΛcU⊤c (SVD). It leads to
the following form of the kernelized Ri j ,
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c K
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where K c is the c-th kernel Gram matrix using the kernel
function kc;
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(a)

(b)

Fig. 2 Interpretation in the proposed kernel (28)

and the kernel vector kic corresponds to the i-th column vec-
tor of K c as

kic =[kc(xic, x1c), . . . , kc(xic, xnc)]⊤ = Φ⊤c φic ∈ Rn .

(31)

The proposed kernel formulated in (28) is composed of
two parts, intra kernel (diagonal, c = d) and inter kernel
(off-diagonal, c ̸= d), to which we can give interpretations
as follows (Fig. 2).

4.2.1 Intra Kernel

Due to U⊤c Uc = I , the intra kernels in the diagonal compo-
nents of Ri j result in

Ri j
cc = k⊤ic K

− 1
2

c K
− 1

2
c k jc = φ⊤icV cV c

⊤φ jc, (32)

where V c is regarded as the (kernel) PCA projection vec-
tors (Schölkopf and Smola 2001) in the c-th RKHS Kc. Thus,
this is simply interpreted as the inner product on the PCA sub-
space in Kc (Fig. 2a). Especially, on the training samples, the
diagonal components of Ri j are identical to the original ker-
nels; Ri j

cc = kc(xic, x jc).

4.2.2 Inter Kernel

The formulation (28) with c ̸= d is closely related to (ker-
nel) canonical correlation analysis (CCA) (Akaho 2001). The
CCA provides the projections A, B for the two types of fea-
tures Φc,Φd in Kc,Kd so as to maximize the correlation
coefficient, by solving the following eigenvalue problem:

[
0 ΦcΦ

⊤
d

ΦdΦ⊤c 0

] [
A
B

]
=

[
ΦcΦ

⊤
c 0

0 ΦdΦ⊤d

] [
A
B

]
Γ ,

(33)

∴ A = V cΛ
−1
c P, B = V dΛ−1

d Q, (34)

where U⊤c Ud = PΓ Q⊤ (SVD). In the CCA, the feature vec-
tors φic,φ jd are first whitened by V cΛ

−1
c , V dΛ−1

d via PCA,
and then the PCA axes are rotated by P, Q so as to ensure
the consistency, maximizing the correlation coefficient. By
using these notations, (28) is further rewritten to

Ri j
cd = φ⊤icV c PΓ

1
2 Γ

1
2 Q⊤V⊤d φ jd . (35)

This is a quite similar form to the CCA projection; the feature
vectors φic,φ jd are first projected by PCA vectors V c, V d ,
and then they are rotated by the CCA rotation matrices P, Q
with weighting the CCA axes by the correlation coefficients
Γ

1
2 (Fig. 2b). The differences from the CCA projections are

that (1) we use the orthogonal PCA projection, not whitening,
to preserve the magnitude (norm) of φic,φ jd and then (2) we
employ the weighting by the correlation coefficients Γ which
measure consistency along respective CCA axes. That is, the
inner product in the CCA space is enhanced along the highly
consistent axis of higher Γ .

In summary, the proposed kernel (28) is based on the inner
product by applying the PCA projections to the kernel fea-
ture vectors in RKHSs. For the intra kernel in homogeneous
RKHSs which are intrinsically consistent, the inner prod-
uct is directly employed (Fig. 2a). Whereas, the inter kernel
between heterogeneous RKHSs requires additionally CCA
rotations to ensure the consistency so that the (reasonable)
inner product is computed (Fig. 2b).

By using the transformation (27), the feature matrix that
we deal with in the proposed hMKL is explicitly represented
by

X = ZXφ = [K
− 1

2
1 k1, . . . , K

− 1
2

w kw] ∈ Rn×w, (36)

kc = [kc(xc, x1c), . . . , kc(xc, xnc)]⊤ ∈ Rn . (37)

Therefore, the bilinear classifier in the hMKL is also
described by the bilinear form (1) and the proposed bilin-
ear optimization (Sec.3) is directly applicable even to this
hMKL. It should be noted again that Σw = WwW⊤w is
regarded as the weights on both the intra and inter kernels;
Ki j = tr(Σw Ri j ) in (13).

5 Cross-Modal Learning in Bilinear Framework

The bilinear formulation is also applicable to cope with
multi-modal features in cross-modal learning. The objects
to be classified are occasionally represented in multiple

123

Author's personal copy



ct�[sRƪŀ�²�­s��űĨƩŵ�
ƧÝypĹğf�cpoRƧÝƾßüċƞ
-
��._ǌŸñƢpr�SctąõsuRŇ
ǌêd�jH� uô�²�­îw�²�­ǔ
sĎf�Ǐ|penÐ`RitƖŎƧÝƾß
üuƪŀ�²�­�Ɨõejƾßüpen
ÊŸf�S�
�
OĈ�«��¯�©²�­ċƞ�
Ĉ�«�tĎƿsĎenRĈ©�¬��Ǧź
Ñ�����ǧ^�űĨ£��­_Ħ���
ąõsR´ƲƧÝƾßüs��Rƪŀ©�¬
��ǔtÕǇƩŵ�Ħllƾßf�cp_
ñƢpr�S�
�
�
�
�
�
�
�
�
�
�
�
�«� c tűĨ£��­ x _Ħ��jp`R
űĨƧÝ��
        X ��-0����0�x�0����0.�
�������������������cÝƂ�
pČƝf�Sctp`Rô©�¬��sĎf
�ƾßǏ|�ǉƖejǏ| W uśĝt�[
sÛƮd��S�
�
�
�
�
c�uRÕǇƍǔytďĢ WR picotƾ
ßǏ| WC _ƣŮpÖéd�nZ�cp�ĭ
ùf�Sct W tŇǌês´ƲĲţ�ǌŸf
�cpoRďĢpƾßǏ|�öńsŇǌêf
�cp_o`�S�
�
�
��űĨ�°�­ǔǢÆĚ�
č¸Ż^�ưŨejűĨǐu³ƤsűĨś
ÒGŰŶśÒtġĝt�°�­penƩŵ
d��SË\vRǜŜźÑou XY ěŗs
ămaǫśÒ�²�oY�RĈ�ª°�­
ńƓÝÎó^�uńǔǃTsškn¹xÎ
óÝǦ�ª°�­Gńǔǧpr�Sit�
[rűĨ�°�­ÖouRŤƂfz`Ďƿ
 �²°tÚŵÇƜuÂĭoY�Rd�s
ĎƿsǕÍtrZơŅ �²°Ɛ�ĈÛs
ø{�nZ�SicoRit�[rơŅ 
�²°�ǖćellÇƜ_¶ČrĎƿ �
²°�ĶÚf�ǍÛ§��°��ļőejS
§��°�s��ǢÆĚ_ƑÚd�Ri�
u k-NN s¿Ʃd��¼Ë£²�ƾßüo
ŸZ���SŰŶśÒs]b�Ǐ| w �Đ
Ôf�pRűĨ�°�­ X,Y t§��°�
uitǏ|w tŇǌêûǠypĘƅo`�S 

 
 
 
 
d�sRűĨŕǈpenŰŶśÒÖotĒ
āī�Ū�^dsŤƂeRi���Ǐ|t
ŝáêpenĐÔf�S 
 
 
 
 
 
 
 
 
ccoRL uŰŶěŗŹŋt«¢«��°Ƨ
ÝRIu ?@>A1@A>32�?=/>?3;3??-�.penČ
ĝêd��Ēāê�Ƹſf�ŝáêoY�S
c��tŝáêǞuűĨ�°�­tġĝs
ămZnǌÜsƳČf�cpoRÂĭtǗŀ
tűĨ�°�­�ĳ[cp_o`�S´ƲŇ
ǌêûǠuRǆśƀrǫśġĝŇǌêûǠy
pĘƅd�RÕģèǎţ�ǌŸf�cpoæ
ŴƀsŇǌêf�cp_ñƢpr�Sc�s
��Ħ���Ǐ|uRÕǇĎƿǟĂt|oǝ
ǛtÏ�p�cp_ŉĤd�RŭǕÍrơŅ
 �²°�ǖćellRŊǁƀrĎƿ �²
°t|�ƣçƀsĶÚf�cp_o`RæŎ
ƀrǢÆĚ�ƑÚo`�S�
�
ǭǩƇƌİŎ�
ŖTrźÑƷƾčǤs]Znļőţtňæ
ī�ČǐƀsƈƷejS�
�
���ƧÝƾßü-
��.�źÑ±çźÑƷƾyp
ǌŸejS�
�
N½ƾß�
�#&���%3>?<;��/@/?3@ �ŸZn½ B? ǝ½t
źÑƾß���s]b�īƢ�ƴÌejSĒ
ıűĨpen �!�� űĨ-
.�ĺŸf�pRµÿ
t�[rűĨƧÝ_Ħ���S�
�
�
�
�
�
�
�
ƾßīƢtşǄƖŎ�µƩsƉfS�

� «°�� �>><>�
&/@3�

ĥŋţ�
-�/9/9�(>755?��

�.�

�� ������

£��­ƾßţ� 
�� 
�����

ƧÝƾßţ� ��� 
��
��

�
ĥŋţ�£��­ƾßţ���ǥZīƢ�
ƉeR^lƾßü�ǋ^sÈZ«°�ypŇ
ǌêd�nZ�SÈ«°�uƾßü�ǌŸf



�ǘtưƑ���tâŧs�lr_�S�
�
OçÊƾß�
śsR&+�% çźÑ�²����s]b�çÊ
ƾßsǌŸejSńƓÝ´tô¡®²¨^�
��!�� űĨ-�.�ĶÚf�pRµÿt�[rű
ĨƧÝ_Ħ���S�
�
�
�
�
�
�
�
�
�
ƾßīƢtşǄuµƩt�[sr�S�

� «°�� �>><>�
&/@3�

ĥŋţ�
- <0/E/?67�$@?A��

�.�

�� ������

£��­ƾßţ� �
� ������

ƧÝƾßţ� ��� 
�����

�
ÓtźÑƷƾtąõpöŖsRĥŋţ�£�
�­ƾßţtīƢ�×ǣeR^lÈ«°�t
ƾßü_Ħ��nZ�cp_Û^�S�
À´tƖŎs��RűĨƧÝƩŵîwitġ
ĝotƾßtňæī�Ɖfcp_o`jS�
�
����ƧÝƾßütĹğĲţ-
��.�ôƊźÑ
ƷƾƻǠyǌŸejS�
�
Nƪŀ�²�­Ɨõ�
ƧÝƾßtĹğtǪlpenRƪŀ�²�­
Ɨõ���yǌŸejS�9<C3>��/@/?3@ s]
ZnR� Ɗt�²�­�Ɨõenƾß�Ƨk
jpc�µƩtīƢ�ĦjS�
�

� �>><>�&/@3�

ĥ ŋ ţ s � � Ɨ õ�
-?7:=93" !.�

�������

ƧÝƾßţs��Ɨõ� �
��
��

�
ƧÝƾßţs�knR�²�­ǔtǕÍī�
ƟĮejƗõ_Ƨ��Rĥŋţsşzn�ǥ
ZƾßīƢ�ƉenZ�S�
�
OĈ�«��¯�©²�­ċƞ�
ǫlƂtĹğpenR�¯�©²�­ċƞy
tǌŸ�Ƶ|jS�;7:/9?�C7@6��@@>70A@3?�
�/@/?3@ s]ZnRçŰtĔīĬĄpźÑĬ
Ąt�¯�©²�­s��ƾß�ƧkjS�
�

� �11A>/1E�

ĥŋţ�
-!/:=3>@�3@�/9��

�.�


������

ƧÝƾßţs��ċƞ� ����
��

�
ƧÝƾßüċƞtŏƔ|s]ZnRźÑpĔ

īpZ[Žr�©�¬��ǔotċƞ_æ
ŎƀsƧ\�cp_Ɖd�jS�
�
�
�űĨ�°�­ǔǢÆĚ-
�
.săm`Rź
Ñ±çźÑt§��°��ƧkjS�
�
NĿėŭeĎƿŒÚ�
ǢÆĚƑÚs]b�Ǐ|Ňǌêtňæī�
ƴÌf�j~RÕǇ �²°penUǂV�
ø}źÑǔot§��°��ƧkjǦµÿǧS�
�
������� ŝáêŭe� � � �ŝáêň��
�
�
�
�
�
�
�
�
�
�
´ÿouǏ|tĉ`d�žÆƥoƩƉen
Z�SĕÿuŝáêŭeRl{�űĨtŕǈ
�ŭƭen§��°��ƧkjąõRòÿu
ļőţs��ŝáê�ĐÔejąõtƖŎ
oY�Sļőţs��RÕǇ �²°oY�
UǂVǟĂ_ŝeaĶÚd�nZ�cp_Û
^�SccouRĎƿsǕf�ĬĄǦUĎƿ
_É^V�UqcsZ�^Vǧ�³Ü·\n
ZrZs�Ǖ��gRÕǇ �²°ǦUǂVǧ
_ƣçƀsĶÚd�nZ�Sc�s��Rļ
őejǢÆĚƑÚţs]ZnRňĭrǏ|_
Ħ��nZ�cp_Ɖd�jS�
�
OǢÆĚsămaçÊƾß�
śsRçźÑ^�Ħ���űĨ�°�­ǔo
tǢÆĚsăm`R¼Ë£²�ƾßţ�ŸZ
nçÊƾß�ƧkjS +37F:/;;� /1@7<;�
2/@/?3@sĎen���OpöŖs��!��űĨ-�.

�¡®²¨ŞsĶÚeRűĨƧÝ�ŕİejS
ƾßsu 8�##��8�
�ţ�ĺŸejS�
�

� �11A>/1E�

ĥŋţ�
-�6A/;5�3@�/9���

�.�

������

ĥŋţ�
-+/;5�"<>7���

�.�

�

��

ǍÛ§��°�ǢÆĚ� �

��

�
´ƩsƉf�[sĥŋţpöŖsǥZƾß
īƢ_Ħ��jS�
À´tčǤs��RǍÛ§��°�s]b�
Ǐ|îwic^�ƑÚd��ǢÆĚtňæ
ī�Ɖfcp_o`jS�
�
ǲĞŸŁųǳ�
-�.�*��#��*/=;78�L'@/@7?@71/9�!3/>;7;5�
(63<>E�M�+793E��;@3>?173;13��������
-�.�&���3;/@@<;�����,���A2703>@��/;2����

Features
#1 #2 #499 #500

image1

image2

Fig. 4. Synthetic image data. The bright rectangles which are common
patterns appear every two features with white noise. The feature matrix is
constructed by unfolding each of image frame into a vector form.
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Fig. 5. Pattern matching on synthetic image data. The map weights wX and
wY are depicted in pseudo colors. This figure is best viewed in color.

matching. By comparing S3CCA to SCCA and S2CCA, it is
demonstrated that the combination of the smoothness and the
structured sparseness works quite well for partial matching. As
to computation time, in S3CCA, the CG method (Algorithm 1)
takes 0.4 sec, while the generalized eigenvalue solver requires
3.6 sec on Core-i7 2.9GHz PC.

2) Realistic Image: Next, we applied the proposed method
to the partial matching between the realistic images (from
UIUC car image dataset [18]) that contain car as common
patterns. Those images are of 175× 90 and 260× 195 pixels.
In this task, it should be noted that unlike the ordinary car
detection, there is no prior knowledge; that is, we do not
know what and where the target is in advance. The GLAC
local image features [8] are extracted at dense grid points in
6 pixel step with the scale of 6 pixels, producing 364 and
1302 points in respective images; we follow the setting of
the feature reported in [8] to obtain 324-dimensional GLAC
feature vectors, the feature arrays of X ∈ R324×364 and
Y ∈ R324×1302. The obtained map weights are shown in
Fig. 6, demonstrating that S3CCA can detect the car even
though neither the target category (car) nor the detector is
given. This is because the features belonging to the car regions
are salient and shared by the feature arrays X and Y .

B. Motion Sequences

We conducted two types of experiments using motion
sequences in Weizmann action dataset [19]; one is the motion
matching as in the image matching, and the other is the
classification of motions based on the similarity computed via
the matching. The Weizmann dataset [19] contains nine types
of human action; running, walking, jumping jacks, jumping
forward, jumping in place, galloping sideways, waving two
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Fig. 6. Pattern matching on car image data. The map weights are depicted in
pseudo colors and overlaid on the images. This figure is best viewed in color.
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Fig. 7. Motion matching on Weizmann action dataset. The map weights wX
and wY are shown as the time-series sequence.

hands, waving one hand, and bending, which are performed
once by each of nine subjects. In these experiments, we ex-
tracted the frame-based motion features by CHLAC [20] from
the motion sequence to form the feature matrix X ∈ R251×T

where T indicates the number of frames in the sequence.

1) Motion Matching: We concatenated all the motion se-
quences of the nine actions performed by the subject 2 and
compared it to the sequence of the action of waving two hands
by the subject 1. In this experiment, the map weights are
obtained as the 1-dimensional time-series sequence and the
results are shown in Fig. 7. The proposed S3CCA produces the
favorable weights that detect the common action of waving two
hands. Note that the map weights are zeros on the irrelevant
actions that are not shared in those two sequences.

2) Motion Classification: The proposed S3CCA can be
utilized for classification as follows. The two motion sequences
are compared via the partial matching and their similarity is
defined by the “canonical angle”, θ = cos−1{w⊤XKXY wY },
where wX and wY are the map weights produced by S3CCA.
Obviously, the sequences of the high affinity exhibit small
angle θ ≈ 0. We classify the input sequence by k-NN, say
k = 3, utilizing the canonical angles as the similarity measure.

For comparison, we also applied the methods of mutual
subspace method (MSM) [21] and constrained mutual sub-
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structured sparseness works quite well for partial matching. As
to computation time, in S3CCA, the CG method (Algorithm 1)
takes 0.4 sec, while the generalized eigenvalue solver requires
3.6 sec on Core-i7 2.9GHz PC.

2) Realistic Image: Next, we applied the proposed method
to the partial matching between the realistic images (from
UIUC car image dataset [18]) that contain car as common
patterns. Those images are of 175× 90 and 260× 195 pixels.
In this task, it should be noted that unlike the ordinary car
detection, there is no prior knowledge; that is, we do not
know what and where the target is in advance. The GLAC
local image features [8] are extracted at dense grid points in
6 pixel step with the scale of 6 pixels, producing 364 and
1302 points in respective images; we follow the setting of
the feature reported in [8] to obtain 324-dimensional GLAC
feature vectors, the feature arrays of X ∈ R324×364 and
Y ∈ R324×1302. The obtained map weights are shown in
Fig. 6, demonstrating that S3CCA can detect the car even
though neither the target category (car) nor the detector is
given. This is because the features belonging to the car regions
are salient and shared by the feature arrays X and Y .

B. Motion Sequences

We conducted two types of experiments using motion
sequences in Weizmann action dataset [19]; one is the motion
matching as in the image matching, and the other is the
classification of motions based on the similarity computed via
the matching. The Weizmann dataset [19] contains nine types
of human action; running, walking, jumping jacks, jumping
forward, jumping in place, galloping sideways, waving two
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hands, waving one hand, and bending, which are performed
once by each of nine subjects. In these experiments, we ex-
tracted the frame-based motion features by CHLAC [20] from
the motion sequence to form the feature matrix X ∈ R251×T

where T indicates the number of frames in the sequence.

1) Motion Matching: We concatenated all the motion se-
quences of the nine actions performed by the subject 2 and
compared it to the sequence of the action of waving two hands
by the subject 1. In this experiment, the map weights are
obtained as the 1-dimensional time-series sequence and the
results are shown in Fig. 7. The proposed S3CCA produces the
favorable weights that detect the common action of waving two
hands. Note that the map weights are zeros on the irrelevant
actions that are not shared in those two sequences.

2) Motion Classification: The proposed S3CCA can be
utilized for classification as follows. The two motion sequences
are compared via the partial matching and their similarity is
defined by the “canonical angle”, θ = cos−1{w⊤XKXY wY },
where wX and wY are the map weights produced by S3CCA.
Obviously, the sequences of the high affinity exhibit small
angle θ ≈ 0. We classify the input sequence by k-NN, say
k = 3, utilizing the canonical angles as the similarity measure.

For comparison, we also applied the methods of mutual
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