科学研究費助成事業

研究成果報告書

平成 26年 6月 17日現在

機関番号: 1 3 2 0 1
研究種目: 若手研究(B)
研究期間: 2012 ~ 2013
課題番号: 2 4 7 5 0 2 1 6
研究課題名(和文)生細胞に頼らない生体適合高分子材料の評価法の確立
研究課題名(英文)Estimation of Biocompatibility of Polymeric Materials without Living Cells
研究代表者
源明 誠(Gemmei, Makoto)
富山大学・大学院理工学研究部(工学)・准教授
研究者番号:70334711
交付決定額(研究期間全体):(直接経費) 3,500,000 円 、(間接経費) 1,050,000 円

研究成果の概要(和文):固液表界面を選択的に測定可能な全反射吸収近・中赤外分光装置を構築した.全反射近赤外 分光法では,親水(シラノール)・疎水(アルキル)表面の水構造を,0H対称・逆対称伸縮振動の結合音(7000 cm-1)を評価し,親・疎水にかかわらず,固体表面から100 nm以下で,水の密度が増していることを明らかにした.全反射 中赤外分光法では吸着タンパク質の構造を,アミドI(1650 cm-1),アミドII(1550 cm-1)バンドを基に評価し,吸 着タンパク質の構造変化は,親水表面より疎水表面上の方が早く進行することが判明した.親・疎水表面の水構造と吸 着タンパク質の構造変化に明確な相関は認められなかった.

研究成果の概要(英文): Attenuated total reflectance (ATR) near infrared (NIR) and middle infrared (MIR) s pectroscopes, which have the ability to observe the water-solid interface selectively, were constructed. U sing ATR-NIR, a combination band (7000 cm-1) of OH symmetric and asymmetric stretching of water on hydroph ilic (silanol) and hydrophobic (alkylated) solid surfaces was obtained. The ATR-NIR spectra indicated that the density of water on both the hydrophilic and hydrophobic surfaces increased in the range of 100 nm fr om the surface. Using ATR-MIR, amide I (1650 cm-1) and amide II (1550 cm-1) bands of the protein adsorbed on the surface were obtained. Structural change of the adsorbed protein on the hydrophobic surface was fas ter than that on the hydrophilic surface. A good correlation between the water structures and the structur al changes of an adsorbed protein on the hydrophilic / hydrophobic surfaces was not observed.

研究分野:化学

科研費の分科・細目: 材料化学

キーワード: 高分子機能材料 生体適合性 表面の水

1.研究開始当初の背景

"生体適合性"は,唯一の性質を示すわけで なく、材料の用いられる場所により、血栓形 成などを抑制する細胞非接着性(血液適合 性)と,これとは逆に,壊死や炎症などを起 こさない良好な接着性(組織適合性)のこと を同時に指す.現在は,目的に応じた細胞種 (血球系あるいは組織系細胞)を用いて,細 胞反応を基に,接着性と接着後の応答性を個 別に評価している.これら煩雑な生細胞を用 いた生物学的評価を物理化学的評価に置き 換えられないのは,細胞反応の差異を,表面 モルホロジー,自由エネルギー,電荷などの 材料の物理化学的特徴からは評価できない ことが最大の要因であり,問題解決のために は,これまでとは異なる視点で臨むべきこと を示唆する.現在判明していることは, 接 着は,必ず材料表面の吸着タンパク質を介す 細胞応答は,吸着タンパク質-膜 ること、 タンパク質間相互作用で生じる細胞内シグ ナルにより起こる,ということである.ここ で重要なのは,吸着タンパク質の変性までは 物理化学的現象であり,タンパク質吸着は, 材料表面の水の構造を含めた物理化学現象 である,という点である.

これまでの研究が,材料側の特性,あるい は,結果としての細胞応答に関する情報を多 く与えている一方,材料表面の水の構造,あ るいは,細胞応答に繋がる吸着タンパク質の 構造変化に関する情報は皆無に等しい.これ は,材料表面のみの水や吸着タンパク質を選 択的に評価することが困難であることの結 果ではあるが,逆に材料側に注がれていた視 点を,細胞と材料の間を繋ぐ,「材料表面の 水」と「吸着タンパク質」に向けることで, 煩雑な生物学的評価をせずに,迅速な物理化 学的評価によって,目的に応じた生体適合材 料を選別できることを意味する.

2.研究の目的

本研究では,表面選択的に測定することが できる減衰全反射(ATR)-近赤外(NIR)・ 中赤外(MIR)分光法を適用し,ATR-NIR法 で材料表面の水の構造を,ATR-MIR法で吸着 タンパク質の構造変化を解析し,材料表面の 水の構造とタンパク質の吸着特性の相関お よび吸着タンパク質の分子レベルの構造変 化を明らかにし,物理化学的手法のみに基づ く,生体適合材料の評価法を探る.

赤外分光法は,非破壊,非侵襲に,その場 測定が可能であり,且つ,定量分析,分子レ ベルの構造変化を捉えることができる.NIR およびMIRを併用することで,材料表面の水 の構造,および吸着タンパク質の構造変化を, 連続した単一の実験で評価できると期待される.

3.研究の方法

ATR-NIR および ATR-MIR 測定用のユニッ ト(Figure 1)を作成した.図中の mirror 2 および3は回転可動であり,また,ATR cell は,直動可能である.Mirror 2,3 および ATR cell を所定の配置にすることで,入射角を変 更することができる.ATR 結晶として使用し たシリコン基板の両端面は,法線に対し45, 50,55,60 および 65 度となるように鏡面研 磨した.

Figure 1. Schematic illustration of Attenuate total reflectance unit for near and middle infrared spectroscopes.

全反射分光法は,光が高屈折率媒質(屈折 率 n₁)から低屈折率媒質(n₂)に入射したと き,低屈折率媒質側に僅かに侵入したのち, 全反射する特性(Figure 2)を利用している.

Figure 2. Principle of attenuated total reflectance method.

光の侵入深さ d_p は,図中の式に従い,光の 波長(波数),入射角,媒質の屈折率比によ リ変化する.Figure 3 は,高屈折率光学結晶 をシリコン(n=3.4)とし,水(n=1.3)を測 定したときの d_pである.水の MIR 領域での 主な吸収は,3800 - 2800 cm⁻¹の OH 伸縮, 1650 cm⁻¹の OH 変角であり,NIR 領域では 5000 cm⁻¹の OH 伸縮 + OH 変角の結合音, 7000 cm⁻¹に OH 対称伸縮 + 逆対称伸縮の結 合音がある.MIR 領域の d_pが 300 - 500 nm であるのに対し,NIR 領域の d_pは 100 nm 程 度と 1/3 以下であり,表面水を評価する上で NIR スペクトルは極めて有効であると考えられる. 一方タンパク質は, MIR 領域の 1650 cm⁻¹付近にアミドI, II の吸収を有するので, 吸着タンパク質の2次構造を詳細に解析することができる.

シリコン基板は,水蒸気プラズマ処理によ る清浄化を施し,シラノール表面とした.ま た,シラノール表面を,オクタデシルトリエ トキシシランを用いてアルキル化し,アルキ ル表面とした.また,吸着タンパク質の構造 評価では,シラノールおよびアルキル基表面 に加え,フェニル基,アミノ基,メルカプト 基表面を,トリクロロフェニルシラン,3-ア ミノプロピルトリエトキシシラン、および g-メルカプトプロピルトリエトキシシランを 用いて構築した.

シラノールおよびアルキル表面上の水の スペクトルは,入射角45-65度の範囲で得 た.測定は,空のATRセルをバックグラウン ドとし,その後,超純水を流入し,サンプル 測定を行い,水のスペクトルを得た.吸着タ ンパク質のスペクトルは,入射角60度で得 た.リン酸緩衝生理食塩重水(PBSD)をATR セルに流入しバックグラウンドとした.その 後,45 mg/mLのウシ血漿アルブミン(BSA) PBSD 溶液を流入,所定時間後に PBSD で ATR セル内を洗浄し,サンプル測定を行い吸 着タンパク質のスペクトルを得た.

4.研究成果

4-1.固体表面の水の構造

純水の近赤外スペクトルは,7000 cm⁻¹ 付 近に OH 伸縮振動の倍音,5000 cm⁻¹ に OH 伸縮振動と変角振動の結合音に帰属される 成分を持つ.種々の入射角で得られた SiOH 表界面の純水の ATR-NIR スペクトルを Figure 4 に示した.

Figure 4. Attenuated total reflectance near infrared spectra of water on the hydrophilic (silanol) surface at various incident angles. Inset: Magnified spectra.

Figure 5 は , 5000 cm⁻¹の成分で規格化し たスペクトルである . 5000 cm⁻¹を中心とす る成分の波形は,角度によらず同じであった が,7000 cm⁻¹の成分は,入射角の増加に伴 い,相対的に吸収強度が増加した.ATR 法に おいては,波長(波数)および入射角により 光路長(もぐりこみ深さ)が変化するものの, 表界面からの距離に依存した水の構造ある いは密度の変化がない限り,スペクトル形状 は変化しない.このことは、親水表界面近傍 の水は,バルク中の水とは異なる構造あるい は密度が異なることを示唆する.

Figure 5. ATR-NIR spectra of water on the hydrophilic (silanol) surface, which were normalized by the absorbance at \sim 5000 cm⁻¹.

さらに,高い入射角(60度および65度) におけるスペクトル(Figure 6)には,6300 cm⁻¹付近に新たな成分が明確に観測され,バ ルク中とは異なる水が存在することを示唆 する.

同様の手法を用いて,疎水(アルキル)表 面の水の構造についても評価を行った.その 結果,親水(シラノール)表面と同様に,7000 cm⁻¹の成分は,入射角の増加に伴い相対的に 吸収強度が増加し,疎水表界面の水の密度が 上昇していること,6300 cm⁻¹に新たな成分 が現れ,バルク水とは異なる構造の水が存在 することを示唆した.

Figure 6. ATR-NIR spectra of water on the hydrophilic (silanol) surface at various incident angles in the wavenumber range of 8000-5500 cm⁻¹.

4-2.固体表面上の吸着タンパク質の構造

Figure 7 に固体表面(シラノール(OH), アルキル(CH₃), アミノ(NH₂), メルカプ ト(SH) およびフェニル(Ph)) に吸着した BSA および溶液中の未変性 BSA(BSA_{na})の MIR スペクトル(アミドI(~1650 cm⁻¹) お よびアミドII(~1575 cm⁻¹) バンド)をまと めた.吸着タンパク質のスペクトルは,固体 表面に BSA 溶液を接触してから1時間後に 得られたスペクトルである.

Figure 7. ATR-MIR spectra of BSA adsorbed to various solid surfaces and a native BSA (BSA_{na}). OH: silanol, CH₃: alkyl, NH₂: amino, SH: mercapto, and Ph: phenyl surfaces.

Figure 8. Curve-fitting result for the ATR-MIR spectrum of BSA adsorbed onto silanol surface. Black line: original spectrum, red lines: Gaussian component.

吸着タンパク質の構造解析は,アミドIバ ンドの成分分離により行った.Figure 8 は, シラノール表面上の吸着タンパク質の成分 分離結果である.アミドIバンドは,6 つの 成分に分離することができ,1615 および 1684 cm⁻¹の成分はβ-シート,1632 および 1645 cm⁻¹の成分は,伸長鎖(ループ,ター ン,ランダムコイル),1654 および1674 cm⁻¹ は,ヘリックスに帰属される.種々の固体表 面上の吸着 BSA について同様に構造解析を 行ったところ,BSA 溶液接触が1時間の場合 には,固体表面の違いによる吸着タンパク質 の構造に違いは見られなかった. Figure 9 に BSA 溶液の接触時間と吸着タ ンパク質中のヘリックス含有率の関係を示 した.上述したように,接触1時間では,未 変性 BSA と比較した場合,ヘリックス含有 率に変化は見られるが,表面の違いによる変 化は観られない.ヘリックス含有率の違いは, 接触12時間以降で明確に捉えられ,接触12 時間では,親水表面(シラノール(OH))よ りも,疎水表面(アルキル(CH₃))の方が大 きく変化した.このことは,表面の違いによ り,吸着タンパク質の構造変化の速さが異な ることを明示する.

Figure 9. Relationship between a contact time of BSA solution and a helix content of BSA adsorbed onto various solid surfaces.

4-3.まとめ

固体表面上の水の構造を,減衰全反射吸収 近赤外分光法により評価し,親・疎水の違い によらず,表面から100 nm 程度以下で,水 の密度が高く,またバルク水とは異なる水素 結合構造を有する水が存在することを示唆 する結果を得た.一方,減衰全反射吸収中赤 外分光法により,吸着タンパク質の構造を評 価し,構造変化が親水性表面よりも疎水表面 の方が速いことが判明した.本研究で得られ た結果は,現在のところ,表界面の水の構造 からタンパク質の吸着挙動を明確に推定す ることはできないことを示す.今後,種々の 固体表面の水構造および吸着タンパク質の 構造について調査する必要がある.

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計7件)

1. Structure of water in the vicinity of a zwitterionic polymer brush as examined by sum frequency generation method. Kondo, T.; Nomura, K.; Murou, M.; <u>Gemmei-Ide, M.;</u> Kitano, H.; Ohno, K.; Noguchi, H.; Uosaki, K.; Saruwatari, Y., *Colloids Surfaces B:*

Biointerfaces, **2012**, 100, 126-132.

2. Recrystallization of Water in Non-Water-Soluble (Meth)Acrylate Polymers is Not Rare and is Not Devitrification. <u>Gemmei-Ide, M.;</u> Ohya, A.; Kitano, H., *J. Phys. Chem. B.* **2012**, *116*, 1850-1857.

3. Binding of β -amyloid to sulfated sugar residues in a polymer brush. Kitano, H.; Saito, D.; Kamada, T.; <u>Gemmei-Ide, M.</u>, *Colloids Surfaces B: Biointerfaces*, **2012**, 93, 219-225.

4. Sum frequency generation study on the structure of water in the vicinity of an amphoteric polymer brush. Kondo, T.; <u>Gemmei-Ide, M.;</u> Kitano, H.; Ohno, K.; Noguchi, H.; Uosaki, K., *Colloids Surfaces B. Biointerfaces* **2012**, *91*, 215-218.

5. Two-Step Recrystallization of Water in Concentrated Aqueous Solution of Poly(ethylene glycol). <u>Gemmei-Ide, M.;</u> Kasai, R.; Motonaga, T.; Kitano, H., *J. Phys. Chem. B.* **2013**, *117*, 2688-2694.

6. Structure of water at zwitterionic copolymer film-liquid water interfaces as examined by the sum frequency generation method. Kondo, T.; Nomura, K.; <u>Gemmei-Ide, M.;</u> Kitano, H.; Noguchi, H.; Uosaki, K.; Saruwatari, Y., *Colloids Surfaces B: Biointerfaces* 2014, *113*, 361-367.

7. Sum-frequency Generation Analyses on the Structure of Water at Amphoteric SAM-Liquid Water Interfaces. Nomura, K.; Nakaji-Hirabayashi, T.; <u>Gemmei-Ide, M.</u>; Kitano, H.; Noguchi, H.; Uosaki, K., *Colloids Surfaces B: Biointerfaces* **2014**, in press.

〔総説〕(計1件)

1. 固体高分子中の水の結晶化挙動と生体適 合性の相関, <u>源明 誠</u>, 北野博巳, *表面科学*, Vol. 33, pp. 15-20 (2012).

〔図書〕(計1件)

1. 温度可変赤外分光法による固体高分子中の水の相転移挙動の評価, <u>源明 誠</u>, <u>北野博</u> <u>巳</u>,「IR分析 テクニック事例集」株式会社 技 術情報協会, pp. 410-413 (2013).

6.研究組織

(1)研究代表者 源明 誠(GEMMEI-IDE,Makoto) 富山大学・大学院理工学研究部・准教授 研究者番号:70334711