科学研究費助成事業

平成 28 年 6 月 26 日現在

研究成果報告書

科研費

機関番号: 14303
研究種目: 基盤研究(B) (一般)
研究期間: 2013 ~ 2015
課題番号: 25289006
研究課題名(和文)超大規模フェーズフィールドGPU計算によるデンドライト競合成長メカニズムの解明
研究課題名(英文)Elucidation of mechanisms of dendrite competitive growth by very-large-scale GPU phase-field simulations
研究代表者
高木 知弘(Takaki, Tomohiro)
京都工芸繊維大学・機械工学系・准教授
研究者番号:5 0 2 9 4 2 6 0

交付決定額(研究期間全体):(直接経費) 13,300,000円

研究成果の概要(和文):東京工業大学のGPUスパコンTSUBAME2.5による大規模フェーズフィールドシミュレーション を可能とした.また,これによる二元合金一方向凝固シミュレーションを行い,単結晶・二結晶・多結晶体におけるデ ンドライト競合成長挙動を詳細に考察し,そのメカニズムを解明した.また,フェーズフィールド法と格子ボルツマン 法を連成させることで,液相流動を伴う二元合金凝固のシミュレーションを可能とした.

研究成果の概要(英文): We have enabled the very-large-scale phase-field simulation using the GPU supercomputer TSUBAME2.5 at Tokyo Institute of Technology. By performing the simulations during directional solidification for single-, bi-, and poly-crystals of a binary alloy, the mechanism of competitive growth between dendrites has been made clear. In addition, we have developed a simulation tool which can simulate the dendrite growth with melt flow by coupling phase-field method and lattice Boltzmann method.

研究分野:計算力学,材料力学,材料組織学

キーワード:フェーズフィールド法 GPU計算 デンドライト 凝固組織 競合成長

1.研究開始当初の背景

凝固組織は鋳造製品の特性を決定し,また それ以降の加工特性に大きな影響を与える. このため,高精度な製品を作成するためには, 凝固組織の適切な制御が極めて重要である. しかしながら,金属材料は不透明であること に加え,凝固過程は高温環境下で行われるた め,金属材料の凝固過程の直接観察は薄膜材 を除いて極めて困難である.そのため,数値 シミュレーションによる評価が不可欠であ る.

金属材料の凝固は一般にデンドライト(樹 枝状結晶)の成長によって進展する.この複 雑な形態を有するデンドライトの成長を表 現可能な最も強力な数理モデルとして,フェ ーズフィールド法が注目されている.しかし ながら、フェーズフィールド法は拡散界面モ デルであるため計算コストが高いことが問 題である.加えて,高精度な凝固組織予測の ためには,多数のデンドライトを考慮した競 合成長過程を再現する必要がある.このため, フェーズフィールド法による大規模シミュ レーション技術の確立が急務である.また, 凝固時には必ず液相流動が生じ凝固形態を 大きく変化させるため,液相流動を伴うデン ドライト成長を表現可能な数値モデルの構 築も重要である.

2.研究の目的

本研究では,演算性能の高い GPU を複数 並列させることで大規模フェーズフィール ドシミュレーションを高速に実行すること の可能な計算手法の開発を行う.また,開発 したコードを東京工業大学の GPU スパコン TSUBAME2.5 を用いて計算することで,二 元合金の単結晶・二結晶・多結晶における大 規模一方向凝固シミュレーションを行い,デ ンドライト競合成長を詳細に考察し,メカニ ズムを解明する.また,液相流動を伴うデン ドライト成長を表現可能な数値モデルを構 築する.

3.研究の方法

(1) 定量的フェーズフィールド法

フェーズフィールド法は拡散界面モデル であるため界面幅に依存して結果が変わる という欠点を有している.このため,界面幅 に依存しない定量的なシミュレーションを 行うことの可能な,二元合金凝固の定量的フ ェーズフィールドモデル[M. Ohno, K. Matsuura, Phys. Rev. E 79 (2009) 031603.] を採用する.また,3次元一方向凝固過程に おけるデンドライト競合成長を考察するた め,本モデルを3次元化し,かつ一方向凝固 問題に拡張する.

(2) 並列 GPU コーディング

GPU 間ではデータを直接やり取りすること ができないため, CPU を介してデータ転送を 行う.このため, GPU 並列化には通常の CPU 並列に用いられている MPI (Message Passing Interface)を用いる.また, GPU 計算は CUDA (Compute Unified Device Architecture)を 用い,c言語によるコーディングを行う.

(3) GPU スーパーコンピュータ TSUBAME

シミュレーションは東京工業大学の GPU ス パコン TSUBAME2.5 を用いて行う .TSUBAME2.5 は、HP 社製サーバ HP SL390s G7 を 1408 ノー ド搭載している . 各ノードは、CPU (Xeon X5670)2 Socket, GPU (NVIDIA Tesla K20X)3 枚から構成され、トータルで 4224 枚の GPU を搭載している .

(4) 大規模シミュレーションの可視化

大規模シミュレーションにおいて,データ 整理と可視化は大きな問題である.本研究で は,簡単にデータを間引く方法とデータ出力 をバイナリー形式で圧縮することでデータ 整理を効率化する.また,可視化にはフリー ソフト ParaView を用いる.

4.研究成果

(1) 2次元二結晶競合成長シミュレーション 2次元問題における二結晶競合成長シミュ レーションを行った.図1にシミュレーション結果の一例を示す。

図12次元二結晶競合成長シミュレーション

図1のシミュレーションでは,左側に温度 勾配方向に成長する結晶粒,右側に温度勾配 方向から少し左に傾いて成長する結晶粒を 配置し,収束粒界で二つの粒が競合する.こ れまでの常識では,温度勾配方向に成長する 粒が斜め方向に成長する粒をブロックして 優先的に成長するといわれてきた.しかしな がら,本シミュレーションにおいて,斜め方 向に成長する粒が優先的に成長する条件も あることを示した.また,この通常でない成 長を詳細に考察し,そのメカニズムを解明し た.[<u>T. Takaki</u> et. al., Acta Mater. 81 (2014) 272-283; Y. Shibuta, M. Ohno, <u>T.</u> Takaki, JOM 67 (2015) 1793-1804]

(2) 2次元多結晶競合成長シミュレーション 図 2 に示すような,2次元多結晶競合成長 シミュレーションを行った.図の上から下に かけて時間が経過する.図より,時間の経過 とともに粒数が減少するが,必ずしも温度勾 配方向に成長する粒が生き残るわけではな いことがわかる.また,収束境界は比較的直 線であるが,発散境界は左右に移動し安定し ないことがわかる.[<u>T. Takaki</u> et.al.,J. Cryst. Growth 442 (2016) 14-24]

(3) 3次元単結晶競合成長シミュレーション 一方向凝固過程における一次枝配列挙動 を評価するために,図3のような3次元単結 晶一方向凝固シミュレーションを行った. 1024×1024×1024格子を用いて1000万ステ ップの大規模長時間シミュレーションを256 GPU並列で行っている.図3(a)と図3(b)は温 度勾配が異なり,温度勾配の小さい図3(a) はデンドライト形態,図3(b)はデンドライト からセルに遷移する形態が再現されている. 上から二つ目の図は,上から配列を見た図で あり,これをボロノイ解析したものが三つ目 の図である.この結果,一次枝の形態に依存 せず六角形配列が支配的であることを示し た.また,図3(b)のセルとデンドライトの遷 移領域において最も綺麗な配列を呈するこ とを示した.[<u>T. Takaki</u>, et. al., submitteing (2016)]

図33次元単結晶競合成長シミュレーション

(4) 3次元二結晶競合成長シミュレーション 図4は,3次元二結晶競合成長シミュレー ションの結果である.768×1536×1536格子 を用いて 700 万ステップの大規模長時間シミ ュレーションを 386 GPU 並列で行った.図 4(a)は黄色い粒が 5°水色の粒の方に傾き成 長する.図 4(b)は黄色い粒が 15°水色の粒 の方に傾き成長する.図4(a)では,図1の2 次元計算と同様に,傾いた黄色いデンドライ トが温度勾配方向に成長する水色のデンド ライトを淘汰しつつ成長することがわかる. 一方.図4(b)の黄色いデンドライトの傾きが 大きい場合は,黄色いデンドライトが水色の デンドライトの隙間に入り込むような競合 現象は確認できるが,水色のデンドライトが 黄色のデンドライトに淘汰されることはな かった.また,ジグザグした粒界が形成され

図43次元二結晶競合成長シミュレーション

(5) 3次元多結晶競合成長シミュレーション 図5に示すような3次元多結晶競合成長シ ミュレーションを行った.図5の例は,2048 ×2048×1024格子を用いた結果である.ラン ダム方位を有する64個の結晶核を下面に配 置し,そこから一方向凝固シミュレーション を行った.現在データを整理中であるが,図 2に示す2次元シミュレーションの結果と異 なり,温度勾配方向に成長するデンドライト が優先的に成長する現象が確認された.3次 元問題においては,一つの粒が多くの近接粒 と競合するため,温度勾配方向に成長する粒

図53次元多結晶競合成長シミュレーション

- (6) 液相流動を伴うデンドライト成長
- フェーズフィールド法と格子ボルツマン 法を連成させることで,液相流動を伴うデン ドライト成長を表現可能な数値モデルを構 築した.また,運動方程式を連成させ,図 6 に示す流れながら成長するデンドライト成 長シミュレーションに成功した.Spring-8 な ど大型放射光施設を用いた凝固のその場観 察実験においてデンドライトが途中で破断 し,それが流れ新しい凝固核になるような報 告がある.本モデルは,そのような現象のシ ミュレーションに有用になると考えている. [R. Rojas, <u>T. Takaki</u>, M. Ohno., J. Comput. Phys. 298 (2015) 29-40; <u>T. Takaki</u> et.al., IOP conf. ser., Mater. sci. eng. 84 (2015) 012066]

図 6 せん断流内で流れながら成長するデン ドライト

5. 主な発表論文等

[雑誌論文](計 12 件)

<u>T. Takaki</u>, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe, <u>T. Aoki</u>, Large-scale Phase-field Studies of Three-dimensional Dendrite Competitive Growth at the Converging Grain Boundary during Directional Solidification of a Bicrystal Binary Alloy, ISIJ International, 査読有, 2016 (早期公開中),

http://doi.org/10.2355/isijinternat ional.ISIJINT-2016-156

<u>T. Takaki</u>, M. Ohno, Y. Shibuta, S. Sakane, T. Shimokawabe, <u>T. Aoki</u>, Two-dimensional phase-field study of competitive grain growth during directional solidification of polycrystalline binary alloy, Journal of Crystal Growth, 査読有, 442, 2016, pp.14-24,

DOI:10.1016/j.jcrysgro.2016.01.036 C. Feichtinger, J. Habich, H. Kostler,

U. Rude, <u>T. Aoki</u>, Performance modeling and analysis of heterogeneous lattice Boltzmann simulations on CPU-GPU clusters, Parallel Computing, 審査有, 46, 2015, pp. 1–13, DOI:10.1016/j.parco.2014.12.003 Y. Shibuta, M. Ohno, <u>T. Takaki</u>,

Solidification in a Supercomputer: From Crystal Nuclei to Dendrite Assemblages, JOM, 査読有, 67, 2015, pp.1793-1804,

DOI: 10.1007/s11837-015-1452-2

S. Sakane, <u>T. Takaki</u>, M. Ohno, T. Shimokawabe, <u>T. Aoki</u>, GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy, IOP Conference Series Materials Science and Engineering, 査 読有, 84, 2015, 012063,

http://stacks.iop.org/1757-899X/84/ i=1/a=012063

<u>T. Takaki</u>, R. Rojas, M. Ohno, T. Shimokawabe, <u>T. Aoki</u>, GPU phase-field lattice Boltzmann simulations of growth and motion of a binary alloy dendrite, IOP Conference Series Materials Science and Engineering, 査 読有, 84, 2015, 012066,

http://stacks.iop.org/1757-899X/84/ i=1/a=012066

R. Rojas, <u>T. Takaki</u>, M. Ohno, A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection, Journal of Computational Physics, 査読有, 298, 2015, pp.29-40, DOI:10.1016/j.jcp.2015.05.045

<u>T. Takaki</u>, M. Ohno, T. Shimokawabe, <u>T. Aoki</u>, Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal, Acta Materialia, 査読有, 81, 2014, pp.272-283,

DOI:10.1016/j.actamat.2014.08.035 <u>T. Takaki</u>, Phase-field modeling and simulations of dendrite growth, ISIJ International, 査読有, 54, 2014, pp.437-444,

DOI:10.2355/isijinternational.54.43 7

N. Onodera, <u>T. Aoki</u>, Large-Scale Simulation of Gas-Liquid-Solid Multiphase Flow on GPU Cluster, JAPANESE JOURNAL OF MULTIPHASE FLOW, 査読有, 27, 2014, pp.607-613, DOI:10.3811/jjmf.27.607

M. Okamoto, <u>A. Yamanaka</u>, T. Shimokawabe, T. Aoki, Multiple-GPU Computing of Polycrystalline Grain Growth

Simulation using Multi-Phase-Field Method, Transactions of the Japan Society for Computational Engineering and Science, 査 読 有 , 2013. pp.20130018-20130018, DOI:10.11421/jsces.2013.20130018 T. Takaki, T. Shimokawabe, M. Ohno, A. Yamanaka. <u>T. Aoki</u>, Unexpected selection of growing dendrites by verv-large-scale phase-field simulation, Journal of Crystal Growth, 查読有, 382, 2013, pp.21-25, DOI:10.1016/j.jcrysgro.2013.07.028

[学会発表](計 19 件)

<u>高木知弘</u>,坂根慎治,大野宗一,澁田 靖,下川辺隆史,<u>青木尊之</u>,大規模 phase-field 計算による単結晶二元合金 一方向凝固過程の一次枝配列挙動評価, 日本鉄鋼協会第 171 回春季講演大会, 2016年3月25日,東京理科大学 葛飾キ ャンパス(東京)

<u>T. Takaki</u>, R. Rojas, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe, <u>T. Aoki</u>, Phase-field studies of dendrite growth with natural convection, The 8th International Workshop on Modeling in Crystal Growth, 2015 年 11月 18日, Spa (Belgium).

T. Takaki, M. Ohno, Y. Shibuta, S. Sakane, T. Shimokawabe, T. Aoki, Dendrite competitive growth bv large-scale phase-field simulations using GPU supercomputer, The 3rd International Workshops on Advances in Computational Mechanics, 2015 年 10月14日, KFC Hall & Rooms (Tokyo). 高木知弘, 坂根慎治, Rojas Roberto, 大野宗一, 澁田 靖, 下川辺隆史, <u>青木</u> <u>尊之</u>,液相流動を伴うデンドライト成 長の大規模 phase-field lattice Boltzmann シミュレーション, 日本機械 学会第 28 回計算力学講演会, 2015 年 10 月11日, 横浜国立大学(横浜)

<u>高木知弘</u>,坂根慎治,大野宗一,澁田 靖,下川辺隆史,<u>青木尊之</u>,二結晶二 元合金におけるデンドライト競合成長 の大規模 3D phase-field シミュレーシ ョン,日本鉄鋼協会第 170 回秋季講演大 会,2015年9月 18日,九州大学 伊都キ ャンパス(福岡市)

<u>T. Takaki</u>, R. Rojas, M. Ohno, T. Shimokawabe, <u>T. Aoki</u>, GPU phase-field lattice Boltzmann simulations of growth and motion of binary alloy dendrite, Modeling of Casting, Welding and Advanced Solidification Processes, 2015 年 6 月 25 日, Awaji Yumebutai International Conference

Center (Awaji). T. Takaki, R. Rojas, M. Ohno, Coupling simulations of growth and motion of dendrite by phase-field lattice boltzmann method, Coupled Problems 2015, 2015 年 5 月 20 日, Venice (Italy). 高木知弘, 坂根慎治, 大野宗一, 澁田 靖, Phase-field 法による多結晶二元合 金のデンドライト競合成長シミュレー ション、日本鉄鋼協会第169回春季講演 大会, 2015年3月19日, 東京大学駒場 キャンパス(東京) T. Takaki, R. Rojas, T. Shimokawabe, phase-field <u>Т.</u> Aoki, Multi-GPU lattice Boltzmann simulations for growth and moving of binary allow dendrite. SIAM Computational Science and Engineering, 2015 年 3 月 14 日, Salt Lake City (USA) <u>高木知弘</u>,大野宗一,下川辺隆史,<u>青</u> <u>木尊之</u>, GPU スパコン TSUBAME2.5 による デンドライトー方向凝固の phase-field シミュレーション、日本機械学会第 27 回計算力学講演会, 2014年11月23日, 岩手大学(岩手市) T. Takaki, M. Ohno, GPU accelerated phase-field simulations durina dendrite competitive growth of binary alloy polycrystal, The 9th Pacific Rim International Conference on Modeling of Casting and Solidification Processes, 2014 年 11 月 25 日, Senri Life Science Center (Suita) 高木知弘,大野宗一, Phase-field 法に よる一方向凝固過程における多結晶競 合成長シミュレーション、日本鉄鋼協 会第 168 回秋季講演大会, 2014 年 9 月 24日,名古屋大学(名古屋市) T. Takaki, M. Ohno, T. Shimokawabe, T. Aoki, 3D Large-scale Phase-field Simulations of Competitive Dendritic Growth during Directional Solidification, The Third International Symposium on Phase-field Method 2014. 2014 年 8 月 28日, State College (USA) T. Takaki, 2D and 3D Phase-Field Simulations of Competitive Dendrite Growth During Directional solidification of Binary Alloy, 11th. World Congress on Computational Mechanics, 2014年7月23日, Barcelona (Spain) 高木知弘,大野宗一,下川辺隆史,青 <u>木尊之</u>, 複数 GPU によるデンドライト競 合成長過程の3次元 phase-field シミュ レーション, 第 19 回計算工学講演会, 2014年6月11日,広島国際会議場(広 島市)

高木知<u>弘</u>,大野宗一,定量的 phase-field モデルによる3次元一方向 凝固シミュレーション,日本鉄鋼協会 第167回春季講演大会,2014年3月21 日,東京工業大学(東京)

<u>高木知弘</u>,下川辺隆史,大野宗一,<u>山</u> <u>中晃徳, 青木尊之</u>,GPU スパコン TSUBAME によるデンドライト淘汰現象の phase-field シミュレーション,日本機 械学会第 26 回計算力学講演会,2013 年 11 月 12 日,佐賀大学(佐賀市)

<u>T. Takaki</u>, GPU Phase-Field Simulations of Dendrite Competitive Growth in Directional Solidification, The 8th Pacific Rim International Conference on Advanced Materials and Processing, 2013 年 8 月 5 日, Hawaii (USA)

<u>T. Takaki</u>, Large-Scale Phase-Field Computations for Solidification Microstructure Design, The 3rd International Symposium on Cutting Edge of Computer Simulation of Solidification, Casting and Refining, 2013 年 5 月 23 日, KTH and Aalto University (Sweden)

〔その他〕

ホームページ等

6.研究組織

- (1)研究代表者
 高木 知弘(TAKAKI, Tomohiro)
 京都工芸繊維大学・機械工学系・准教授
 研究者番号:50294260
- (2)研究分担者

青木 尊之(AOKI, Takayuki)
 東京工業大学・学術国際情報センター・教授
 研究者番号:00184036

山中 晃徳 (YAMANAKA, Akinori) 東京農工大学・工学研究科・准教授 研究者番号:50542198

http://www.cis.kit.ac.jp/~takaki/