科学研究費助成事業

研究成果報告書

令和 元年 9月19日現在

機関番号: 12301				
研究種目: 基盤研究(B)(一般)				
研究期間: 2013~2015				
課題番号: 2 5 2 8 9 0 3 6				
研究課題名(和文)多波長偏光を用いた非接触2次元サブミクロン粒径・数密度計測				
研究課題名(茁文)Non-intrusive 2-dimensional sub-micron particle diameter/number-density				
measurement using multi-wavelength polarized lights				
研究代表者				
荒木 幹也(Mikiya, Araki)				
はした。 群馬大学・大学院理工学府・准教授 し				
研究者番号:70344926				
交付決定額(研究期間全体):(直接経費) 13,000,000円				

研究成果の概要(和文):本研究課題では、「非接触」かつ「2次元」の「サブミクロン」粒径計測法の開発を もくろむ.電子顕微鏡のような採取計測では、「採取すること」によって微粒子の「粒径・組成」が変わり、さ らに「時間履歴・空間分布」の貴重な情報が失われる.そこで、非接触計測法である「偏光比法」に着目する. 粒子群に直線偏光レーザを入射する.偏波面に垂直方向の散乱光強度と、偏波面に平行方向の散乱光強度を取得 する.両社の強度比は偏光比と呼ばれ、粒径に依存する.本研究では、多波長光源を用いることで、粒径分布を 一意に求める手法を確立した.この手法はブタン層流拡散火炎に適用され、すす粒子の粒径計測が可能であるこ とが検証された.

研究成果の学術的意義や社会的意義 サプミクロン粒子の「粒径」のみならず「屈折率」も決定できる新計測法の提案である.屈折率から粒子の素材 がわかる.これまでにない計測法として,学術的な価値は高いと考えている. 自動車産業は日本の基幹産業のひとつである.世界と伍して戦うための不断の技術開発を続けてきた関係者のみ なきまの努力に深く敬意を表するものである.本研究が,関係者の皆様にとって少しでもお役に立てばとの思い である.

研究成果の概要(英文):A non-intrusive and 2-dimensional sub-micron particle sizer is developed. Sampling methods such as a conventional electronic microscope can break the particle size distribution and the composition of test particles, and the important information on the growth and spatial distribution are lost. Here, we focus on the polarization ratio method, a non-intrusive particle sizer. A linearly polarized light passes through the particles. The ratio of the scattered lights parallel and perpendicular directions to the polarization plane is acquired. This is called the polarization ratio, and it is related with the particle size distribution can be determined study, by use of multi-wavelength light sources, the particle size distribution can be determined uniquely. This method is applied to a butane laminar diffusion flame, and the soot particle measurement is demonstrated.

研究分野 : 内燃機関

キーワード: 粒径計測 偏光 非接触計測 微粒子 サブミクロン

1.研究開始当初の背景

(1) 本研究課題では、「非接触」かつ「2次元」 の「サプミクロン」粒径計測法の開発をもく ろむ.「微粒子」は、きわめて広範な分野で 注目されている.1)自動車排気中の粒子状 物質,2)燃料噴霧,3)黄砂などのエアロゾ ル,4)印刷トナー、5)肺に直接届く薬剤粒 子などは、数十 nm~数十 μ m オーダの微粒 子である.微粒子は、ときに問題視(除去) され、ときに積極的に利用(生成)される. ごく微小な粒子の制御(生成・製造・粒径 調製・生成抑制・除去・集じん)を実現する には、その粒子が成長する過程をつぶさに観 測する必要がある.我々が考慮すべき粒子は、

今や1 µm オーダ以下の領域(ここでは「サ ブミクロン粒子」と呼ぶ)に到達しつつあり, サブミクロン粒子を対象とした粒径計測法 の確立が必須の課題である。

(a) ディーゼル排気中の微粒子 (国立環境研究所ニュース)

(b) 様々な植物の花粉 (NHK・2008/11/23 放送分)

(c) 大陸から飛来する黄砂(環境省 HP)

図1 様々なサブミクロン粒子

(2) 表1に代表的な粒径計測法を示す.例えば電子顕微鏡は基準となる計測法の1つであり,サブミクロン粒径計測も可能である. 個々の粒子の「形状」まで観察することができるため,粒子計測では絶大な威力を発揮する.最大の弱点は,「採取計測」であることである.微粒子を「現場」から採取し,試料台にのせる.例えば,今まさに生成しつつある「すす粒子」を火炎(現場)から採取し試料サンプルを作成する.この操作で「粒径・組成」は変わり,「時間履歴・空間分布」の 貴重な情報が失われる.

電子顕微鏡のほかにも,遠心沈降法,カス ケードインパクタ,走査型移動度粒径計測法 といった手法が幅広く用いられているが,こ れら「採取計測」に基づく計測法は,全て同 じ問題を抱えることとなる.粒子の成長過程 をつぶさに観察するためには,粒子を採取せ ず,現場にあるまま観測する「非接触」計測 法の確立が求められる.

	粒径計測法	計測次元	粒径計測範囲
計 測取 法	 ・光学・電子顕微鏡 ・遠心(液相)沈降法 ・カスケードインパクタ ・走査型移動度粒径計測法 	× (採取) × (採取) × (採取) × (採取)	
レーザ計測法	 ・位相ドップラ法 ・前方微小角散乱法 ・干渉画像法 ・動的光散乱法 ・<i>偏光比法</i> 	 △ 0次元(点) △ 光路積分 ○ 2次元(面) △ 0次元(点) ○ 2次元(面) 	
<i>偏光比法 →</i> 「2次元」「サブミクロン」計測可能 「計測範囲」は著しく狭い			100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

表1 代表的な粒径計測法

近年,レーザを用いた粒径計測法の発展が 著しい.光を用いるため,粒子を採取するこ となく現場で計測できるという大きな利点 がある.例えば,位相ドップラ法,前方微小 角散乱法,干渉画像法は,燃料噴霧の分野で 幅広く用いられ,燃料噴射弁の開発や燃焼過 程の最適化におおいに貢献している.ただし これらの手法は,燃料噴霧のようなミクロン オーダの粒子には有効であるものの,すす粒 子のようなサブミクロン粒子の計測は困難 となる.原理上,レーザ波長(400~700 nm のオーダ)と粒径が同じオーダとなると,計 測が困難となるためである.

レーザを用いたサブミクロン計測法に,動 的光散乱法がある.この手法は,サブミクロ ン粒子の計測が可能であるものの,基本程に 点計測であり空間分布の把握は難しく,また ハイパワーレーザと高価なデータ処理系を 必要とするため敷居が高い.

本研究では、「非接触」「2次元」「サブミク ロン」粒径計測を実現すべく、「偏光比法」 に着目する.この手法は、ハイパワーレーザ や高価な信号処理器を必要とせず、これまで エアロゾルの分野で用いられてきたもので ある.ただしこの手法は、粒径計測範囲が非 常に狭い(50 nm ~ 200 nm 程度)という 決定的な欠点を有する.また、粒子群は一般 的に粒径に分布がある.すなわち、小から大 までさまざまな大きさの粒子から構成され ており、決して単一粒径の集合ではない.こ の分布は「粒径分布」と呼ばれ,粒子群の粒 径を評価するうえでは欠くべからざる重要 な指標である.「偏光比法」は,粒径分布を 決定することができず,例えば「粒径分布の 幅」,つまり粒子群に含まれる小から大まで の粒子のばらつきの大きさを「仮定」するこ とで,はじめて粒径を決定できるという決定 的な欠点を持つ.

(4) 以上をふまえ、本研究課題では「非接触」 かつ「2次元」の「サブミクロン」粒径計測 を実現するため、従来の偏光比法に「多波長 光源」を導入する.これにより、粒径計測範 囲の拡大と、粒径分布の決定という問題を克 服し、サブミクロン粒径計測法として確立す ることをもくろむ.

2.研究の目的

(1) 本研究では,計測対象であるサブミクロン粒子として「すす粒子」を選択する.これはきわめて困難な計測対象であるものの,その粒径計測法が確立したあかつきには,きわめておおきな成果が得られると判断したためである.

自動車排気に含まれる粒子状物質は,人体 への健康被害が指摘されており,社会的に大 きな問題となっている.今後ますます厳しく なる排気規制に対応するため,粒子状物質の 生成メカニズム把握と排出低減法確立が喫 緊の課題である.このためには,粒子生成過 程を知る,つまり粒径を把握する必要がある.

粒子状物質は,エンジンの燃焼過程で生成 する.燃焼過程で生成するすす粒子は,粒径 が10 nm オーダの1次粒子と,それらが凝集 して形成される粒径100 nm オーダの2次粒 子からなる.いずれもサブミクロン粒子であ り,その粒径計測には多くの困難を伴う.

本研究では,粒径計測の可能性評価を行う という観点から,実機エンジンのような複雑 な場ではなく,単純な燃焼場を選択した.具 体的には,ブタン層流拡散火炎を用い,粒径 計測を行った.

(2) すす粒子の計測には,先述のように「偏 光比法」を用いる.単一の粒子に直線偏光を 入射する.粒子からの散乱光を,偏波面に垂 直・平行な2方向から観測する.両者の強度 比(i2/i1)は「偏光比 ρ」と呼ばれ,ミーの 散乱理論から粒径Dと偏光比ρの関係が解析 的に与えられる.偏光比ρを計測し,解析解 と比較することで,粒径Dを決定できる.

ここで問題となるのが,「粒径計測範囲の 狭さ」と「粒径分布」である.すす1次粒子 は10 nm オーダであり,従来の偏光比法では 計測は難しい領域にある.また,すすは粒子 群として存在するものであり,個々の粒子の 粒径は異なる.粒子群全体が形作る粒径分布 は,これまでの偏光比法では計測不可能であ った.本研究では,多波長光源を導入するこ とで,これらの問題を解決する. 3.研究の方法

(1) 図 2 に球状粒子へ入射する直線偏光の散乱 を示す.入射光の偏光面と垂直方向で観測され る成分を *i*₁,入射光の偏光面と平行方向で観測 される成分を *i*₂とおく 粒子群を仮定した場合, 散乱光強度は各粒径成分の総和 *I*₁,*I*₂として表 される.解析に用いた数式を示す.

 $\varepsilon = I_{i,\lambda_{k}} - \tau_{i,\lambda_{k}} c_{i,\lambda_{k}} n f_{i,\lambda_{k}} (D_{g},\sigma_{g},m,\lambda_{k},\theta) \quad (1)$

図2 球状粒子へ入射する直線偏光の散乱

I:実験から求めた散乱光強度, τ :露光時間,c: 計測機器の光学定数,n:粒子数,f:ミー理論 により求められる理論散乱光強度[1], λ :光源 波長, D_g :幾何平均粒径, σ_g :幾何標準偏差, m:複素屈折率, θ :散乱光角度,i=1,2,k=405, 488 nm である.ここでc,n, D_g , σ_g ,mが未知 変数である.また,すすの粒度分布は対数正規 分布に従うとした.

本実験では2色のレーザを用いる[3]ので,*I*₁, *I*₂それぞれ2本の式を作ることができ,式(1)は 4本で構成される.計測値から理論値を減算し たものを残差 εとする.計4つの総残差が最小 となる変数の組み合わせを解とした.

(2) 図 3 にバーナ,図 4 にイメージセンサー上 に偏光素子を装着したカメラ(以下,偏光カメ ラと称す)を含めた装置概略図を示す.燃料に ブタンを用い,内径 2R = 5.0 mmの燃料ノズル 軸を z 軸,半径方向をr 軸とする.火炎形状を 安定に保つため,バーナ同心円状に酸素濃度 21%の酸化剤を内径 50 mm のノズルから層流で 流出させた.また各流体の流出直前の温度を温 度調節器とシリコンコードヒーターを用いて 35°Cに調整した.本実験では火炎高さを 30 mm とするため,燃料・空気の流量を 41.0 mL/min, 12.0 L/min とした.燃料ボンベは水温 5°Cの恒 温水槽に入れ,温度を一定に保った.

光源に半導体レーザ(波長: Purple = 405 nm, Blue = 488 nm)を用いた.レーザ光はレーザの 前に設置したグランレーザプリズムを通過し, 設置面に対し,45 deg 傾いた直線偏光となって 照射される.この場合,レーザ光の偏光面は設 置面に平行な成分と垂直な成分の合成としてみ なせ,割合は1:1 である.ビーム径は2 色とも およそ 0.4 mm にした.そしてレーザ光を火炎 に照射し,レーザ光が火炎の中心を通るように した.計測はz = 20 mmの高さで行った.

図3 供試バーナとブタン層流拡散火炎

図4 光学系配置.

偏光カメラは散乱角度 θ = 60 deg となる位置 に設置した.散乱光を偏光カメラで取得し画像 から散乱光強度を求めた.偏光素子により,1 枚の写真を4つの偏光角度に分解することがで きる.なお輝炎光の除去をするため,干渉フィ ルターを用いた.

撮影後,計測値と理論値との引き算,即ち残 差が最小になるように光学定数,粒子数,幾何 平均粒径,幾何標準偏差,複素屈折率を変化さ せ,コンピュータで計算を行った.総残差が最 小のものを選び,ポータブル粒度分析器 (PAMS)の結果と比較することで D_g , σ_g , *m* を決定した.PAMS については後述する.

(3) 図 5 に,総残差 c_{sum} の等値面を示す.2 色 のレーザならびに2方向の偏光成分から,4通 リの計測結果が存在する. D_g , σ_g , m を変化さ せながら式(1)により4通りの解析解を求め る.両者の残差を組合せを繰り返し計算によっ て求め,その最小を与える組合せを解とした. 複素屈折率 m = 1.8 - 07iかつ幾何標準偏差Log $\sigma_g = 0.20$ にて収束を得た.残差は,屈折率に対 して大きく変化するものの,幾何標準偏差に対 する依存性が小さい.

(4) 図6に PAMS による粒度分布と, 散乱光を 用いた粒径計測による粒度分布を示す.計測断 面内のすすを全量採取し, PAMS にて粒径分布 を取得した.直径5 mmの採取口を有する採取 管に火炎を直接挿入し,窒素ガスによる反応凍 結および希釈を行ったのち PAMS へ導いた.希 釈倍率は,エジェクターポンプ出口で5600倍 である PAMS による粒度分布は二峰性であり, 大粒径側のピークは,採取管内での凝集である ことが確認されている.

散乱光を用いた粒径計測による粒度分布は, 半径距離ごとに求めた粒度分布を,粒子数を考慮して積算し,計測断面内のすす全量の粒径分 布に換算したものである.散乱光を用いた計測 では,PAMSと比較して粒径を過小評価するこ とが分かる.これは,収束判定の際にLog *a* を過大評価しているためで,判定の刻みの改善 が必要である.

図6 粒径分布

図7にz=20mmにおける粒径と粒子数を示す.火炎面に向け粒径はゆるやかに増大し,粒子数は減少する様子が捉えられている.

図7 幾何平均粒径と標準偏差の分布

4.研究成果

ブタン層流拡散火炎中のすす粒子による散乱 光を取得し,粒径計測を行った.そしてポータ ブル粒度分析器(PAMS)による結果との比較 を行った.

- (1) 散乱光による計測では,幾何平均粒径はz= 20 mm で約 20 nm から 25 nm となる.半径 方向に向け粒径は増大し,粒子数は減少す る.
- (2) PAMS による計測との比較から,幾何標準 偏差の判定精度の向上が必要であることが 示された.今後改善していく予定である. 以上をもって,本研究課題で提案したサブミ

クロン粒径計測法の計測可能性検証は完了 した.

5.主な発表論文等 〔雑誌論文〕(計 0件)

〔学会発表〕(計 3件)

- (1) Long Cheng, Yuichi Koizumi, Seibu Kiribayashi, Shotaro Oda, Mikiya Araki, Soot Volume Fraction Measurement in a Pool Flame Using Transmissive Light Extinction Method, 第 56 回燃焼シンポジウム, E134, 堺市産業振興センター, 2018 年 11 月 14 日-16 日.
- (2)小泉優一,程龍,桐林生武,小田祥 太郎,荒木幹也,直線偏光を用いたブタ ン層流拡散火炎中のすす粒径計測,第56 回燃焼シンポジウム,E331,堺市産業振 興センター,2018年11月14日-16日.
- (3) 桐林 生武,程 龍,小泉 優一,小田 祥 太郎,荒木 幹也,直線偏光を用いたプー ル火炎中のすす粒径計測,第 56 回燃焼 シンポジウム,E332,堺市産業振興セン ター,2018年11月14日-16日.

〔図書〕(計 0件)

〔産業財産権〕 ○出願状況(計 1件)

名称:粒子群計測装置 発明者:荒木幹也,小泉優一,桐林生武,小野 祥太郎,程龍,池田知貴 権利者:国立大学法人群馬大学 種類:特許 番号:特願 2018-210238 出願年月日:2018 年 11 月 8 日 国内外の別:出願予定

○取得状況(計 0件)

名称: 発明者: 権利者: 種類: 番号: 取得年月日: 国内外の別:

〔その他〕 ホームページ等

- 6.研究組織
- (1)研究代表者
 荒木 幹也(Araki, Mikiya)
 群馬大学・大学院理工学府・准教授
 研究者番号:70344926

(2)研究分担者

志賀 聖一 (Shiga, Seiichi) 群馬大学・大学院理工学府・教授 研究者番号: 00154188

(3)連携研究者 なし