科学研究費助成事業

平成 2 8 年 5 月 2 7 日現在

研究成果報告書

機関番号: 13903 研究種目: 基盤研究(B)(一般) 研究期間: 2013~2015 課題番号: 25289227 研究課題名(和文)ニオブ 系無鉛圧電体のドメイン構造と高負荷耐性

研究課題名(英文)Domain Structure and High-load Resistance of Lead-free Niobate Piezoelectrics

研究代表者

柿本 健一(KAKIMOTO, Ken-ichi)

名古屋工業大学・工学(系)研究科(研究院)・教授

研究者番号:40335089

交付決定額(研究期間全体):(直接経費) 14,400,000円

研究成果の概要(和文):本研究ではラマン分光や赤外分光法を用いてニオブ系無鉛圧電材料におけるドメイン構造を 特徴づけることに取り組み、これらの分光学的手法によってドメイン壁近傍で誘電率が局所的に高まることを見出した 。さらに、この知見に基づく製法改良に取り組み、温度および電界下の高負荷耐性に優れる微細組織からなる高密度セ ラミックスの合成にも成功した。

研究成果の概要(英文): Spectrophotometric techniques including Raman and infrared spectroscopies enabled to characterize the domain structure in lead-free niobate piezoelectric materials, and confirmed that a permittivity increased significantly in the vicinity of domain walls. Based on the above fact, a manufacturing process was also improved successfully to synthesize the high-density ceramics having controlled microstructures, which could demonstrate excellent high-load resistances against elevated temperature and applied electrical field.

研究分野: 電子セラミックス

キーワード: 環境材料 セラミックス 電子・電気材料 無鉛圧電体 ドメイン構造

1.研究開始当初の背景

小型高性能なメカニカル部品の需要拡大 に伴い、圧電セラミックスは、燃料噴射バル プ、タイヤ空気圧モニター、航空機姿態制御、 環境発電、など応用分野と使用範囲の拡大が 検討されている。そこでは有鉛・無鉛に限ら ず、過酷な温度、電界強度、負荷荷重、動作 速度、等の要求性能が一層厳しくなることが 予想されている。

鉛系圧電材料のチタン酸ジルコン酸鉛 (PZT)以外で、上記の高負荷環境に対応可能 が見込める無鉛材料はPZTと同じTiO₆八面 体を自発分極の骨格とするビスマス系ペロ ブスカイトと、全く別機構のNbO₆面八面体 からなるアルカリニオプ系(ニオブ系)の2系 統に絞られている。特に後者のニオブ系は室 温斜方晶で、PZTよりも低比重・低比熱・高 キュリー温度を基本物性にもち、圧電特性で は厚み縦振動モードの結合係数 k_tやせん断 方向圧電係数 d₁₅ が優れるという、独特な特 徴をもつ。

研究代表者らが新規合成から一貫して研 究対象にしてきた LNKN セラミックスは、 (Na,K)NbO3ペロブスカイトにLiイオンを適 量固溶させて結晶構造を局所的に歪ませた 新素材で、PZTよりも 100 上回る 465 ま でキュリー点を高温化し、250 を超過して も圧電特性が劣化しないという優れた基本 性能をもつ。さらに、その錯体原料開発によ る精密合成化も提案してきた。

ニオブ系の面白さ(難解さ)は「斜方晶 構造」に由来する 60°ドメイン構造にあり、 正方晶主体のこれまでの誘電体工学とはか なり異なる。例えば、遠心分級技術を応用し たニオブ系セラミックスの粒子サイズ効果 研究では、正方晶のチタン酸バリウムのケー スと異なり、粒子サイズの減少に伴ってアル カリイオンのオーダリングに不規則性が生 じ、別の低対称構造が現れることを発見した。 一方、ニオブ系単結晶を連続昇温した場合に は、200 付近の斜方晶 - 正方晶相変態時の ドメイン・パターン形成に室温 60°ドメイン 構造のパターンが直接寄与し、残存すること も初めて観察した。

すなわち、ニオブ系の特徴起源となるドメ イン構造のダイナミックな働きが圧電デバ イスの高負荷耐性を含む各種圧電性能に大 きく関わることが想像された。

2.研究の目的

そこで、圧電デバイスの応用分野と使用範 囲の拡大に向けて、高負荷環境下における性 能評価を行い、圧電性能を高める工夫が提案 できるか否かを本研究の主要な目的に設定 した。

具体的には、未解明かつこれまで積極利用 されなかった斜方晶系由来の 60°ドメイン構 造をニオブ系無鉛圧電セラミックスの分極 性能向上に活かすことを考え、良質な単結晶 や微構造を制御した多結晶セラミックスを 合成し、各種の温度 / 電界 / 力学負荷条件下 で動的なドメイン構造変化を評価すること によって、構造と物性との相関を見出すこと を目的とした。

これにより、ニオブ系無鉛圧電セラミック スの高負荷環境下における性能向上に向け た材料設計指針を得ることを目論んだ。

3.研究の方法

(1)材料合成

融液法の一種であるフローティングゾー ン(FZ)法を用いてニオブ系単結晶を育成し た。FZ 装置は2 つの楕円反射鏡を用いた赤外 集光加熱部をもち、熱源として2つのハロゲ ンランプを楕円反射鏡の焦点に設置してい る。ニオブ酸ナトリウムカリウム固溶体 (NKN)または NKN のアルカリ成分を一部 Li に 固溶置換した LNKN セラミックスを作製し、 その一部を棒状に成形し、FZ 装置中の上部シ ャフトに原料供給棒として設置し、他方の下 部シャフト部には(100)SrTiO。種結晶を設置 した。軸回転速度 15-25 rpm、上部シャフト 移動速度 1.1-1.5 mm/h、下部シャフト移動速 度 1.0 mm/h の条件で NKN および LNKN の単結 晶を合成した。育成雰囲気は No ガスフロー (流量 50 ml/min)およびロータリーポンプ を用いた減圧雰囲気下の組み合わせとした。

育成した結晶を化学分析(EPMA, ICP) 熱 分析(TG-DTA, DSC)および構造解析(放射 光 XRD, EXAFS, FT-IR)に供し、組成分布や 相変態/結晶構造変化だけでなく、予想され る自発分極量や誘電率(LST 関係式)も見積 った。

(2) ドメイン構造評価

ドメイン構造の観察・評価手法には通例の 偏向顕微鏡や透過型電子顕微鏡(TEM)の他 に、特に共焦点レーザー顕微鏡(Laser Confocal scanning microscopy; LSCM)を用 い、表面研磨試料を非破壊・非接触のまま、 印可電界/温度等をパラメーターにして、そ の場観察(動的観察)も実施した。さらに本 研究では、従来にない新しい取り組みとして、 顕微型偏向ラマン散乱分光および放射光 FT-IR による光学的手法に基づいたドメイン 構造評価に取り組んだ。

ラマン分光の光源はアルゴンイオンレー ザー(532 nm)とし、CCD カメラを用いて入射 レーザーの焦点を観察しつつ、xyz 自動走査 ステージを用いて試料表面をマッピング測 定した。その際、入射光と散乱光の偏光方向 は、試料面内において平行または垂直の条件 で測定を行った。つまり、試料測定面に対し て垂直方向を Z 軸方向とすると、Z(XY)<u>Z</u>、 Z(XY)<u>Z</u>、Z(YX)<u>Z</u>、Z(YY)<u>Z</u>の条件下で測定を行 った。

一方、分子科学研究所の極紫外光施設 (UVSOR)の BL-6B の Vertex70v を用いて真空 試料槽内で遠赤外反射スペクトル測定 (25-1000 cm⁻¹)を行った。一般にアパーチ ャ径が小さくなるにしたがって反射強度が 低下しノイズの影響が無視できなくなるた め、高精度な局所マッピング測定を目指して、 内部光源だけでなく、高輝度の放射光を用い た測定も試みた。

(3)高負荷耐性評価

各種圧電評価法のうち、本研究ではデバイ ス実環境に近い測定手法として、電界誘起ひ ずみ計測法を主に用いた。これは試験片に電 界を印加し、誘起されたひずみより圧電ひず み定数 dを評価する手法である。0.5 V/mm 程 度の微弱な交流電界を用いることが一般的 な共振 - 反共振法と異なり、本手法では数 kV/mm までの比較的高い電界を試験片に印加 することに特徴がある。この電界誘起ひずみ 計測ではひずみゲージおよびレーザドップ ラ振動計(LDV)を用いた。

圧電ひずみ定数 d₃₃の計測系として、ファ ンクションジェネレータ、パワーアンプ、LDV およびロックインアンプを用い、この計測系 に赤外線導入加熱器を組み込み、温度制御装 置によって試験片温度を 25-160 ℃ の範囲で 変化させた。赤外線集光加熱器は、鏡筒部で 集光した赤外線を石英管へ導入し、試験片を 加熱する装置であり、極めて局所的な加熱お よび熱電対によるフィードバック温度制御 も可能である。そこで、昇温速度 3 ℃/min と し、一定温度で 10 min 保持後、振幅 0.1-0.5 kV/mm、周波数 1-200 Hz、三角波ユニポーラ 駆動の電界を印加し、誘起されたひずみを計 測した。

また、圧電ひずみ定数 d₃₃の圧縮応力依存 性は別途ひずみゲージ法によって評価した。 試験片側面にひずみゲージを接着し、電界誘 起されたひずみを計測した。その際の圧縮応 力は、加熱炉付き圧縮小型材料試験機を用い、 分極方向に対して平行方向に 0-213 MPa の範 囲で試験片へ印加した。圧縮応力を 2 min 保 持後、振幅 0.1-0.8 kV/mm、周波数 1-50 Hz、 三角波ユニポーラ駆動の電界を印加し、誘起 されたひずみを計測した。同時に、試験片温 度を 25-148 ℃ の範囲で変化させ、高負荷環 境下で評価を実施した。

4.研究成果

(1)材料合成

FZ 法により合成したニオブ系結晶の結晶 育成方向における特徴を調べた結果、育成初 期に限定して化学組成が連続的に変化する ことを明らかにした。すなわち、育成初期で は時間変化(=結晶成長位置の移動)するに 従って、徐々に Na は減少し、K は増加する傾 向を確認した。これは部位ごとに切り出した サンプルの DSC 測定結果と一致しており、種 結晶の SrTiO₃先端から 3.0 mm 以内の育成初 期部位では原料セラミック棒と比較して、斜 方晶-正方晶転移温度 T_{0-T} が約 10 °C 高温側へ、 一方の正方晶-立方晶相転移点(キュリー点) T_c は約 10 °C 低温側へシフトした。しかし、 種結晶先端から 3.0 mm 以上の部位において は SrTiO₃ によるヘテロエピタキシャルな影 響が弱まり、化学分析や熱分析の結果に場所 依存性が認められなくなり、同時に狙い通り 自発分極軸方向の 101 方位に制御された良質 な単結晶が得られることが判明した。そこで、 以後の試験評価には種結晶先端から 3.0 mm 以上の均質な部位を用いた。

(2)ドメイン構造評価

上記単結晶試料のドメイン構造も種結晶 部から一定以上の距離をあけて結晶成長し た部位では、約 10-30 µm の帯状に配列する ラメラ状のドメイン構造が観察面全体に現 れており、ドメイン構造に場所依存性がほと んどなく均質であることを確認した。

そこで、顕微ラマン分光測定を実施したと ころ、隣り合うドメイン領域で、異なる概形 の散乱スペクトルが得られた。特に、分子振 動に基づくモデリング計算結果と偏光レー ザーラマン散乱スペクトルの2次元マッピ ング像を突合することによって、ドメイン構 造およびドメイン壁にそれぞれ相当すると 推定される特徴的なラマンシフトを見出し た。その結果、偏光ラマン分光法によって大 気中かつ非接触で局所的なドメイン構造お よびその分極軸分布について精密に評価解 析できることが判明した。具体的には、各振 動モードの強度は、ドメイン内の自発分極方 位に依存し、両者の壁近傍(ドメインウォー ル)では特に 250 cm⁻¹および 600 cm⁻¹付近に おける散乱強度の増加が確認できた。この傾 向は入射光と散乱光が平行条件でのみ観測 され、さらに面内回転測定の結果とも併せて、 ラマン選択則より、隣り合うドメイン領域は、 それぞれ(010)_{ortho}、(101)_{ortho}であると同定さ れた。同時に、ドメイン壁近傍における局所 的な自発分極方位の変化も捉え、従前から予 想されていた「ドメイン壁近傍における格子 対称性が正方晶ライク」になっていることを 実験的に初めて確認した。

さらに、このドメイン壁の評価について、 多結晶セラミックスにも展開した。その際に 重要となるドメイン観察試料の作製につい て、バンドギャップを超えるエネルギーをも つ紫外線をアシスト照射した場合に、試料表 面層から紫外線励起電子が放出され、湿式エ ッチング反応が促進されることを新たに見 出した。この発見により、粒内で得られたラ マンスペクトルは、粒界付近で得られたスペ クトルとは明らかに異なっていることをさ らに明確化でき、観測条件の制御によって、 粒内のドメイン構造を分離評価できること が判明した。これにより、単結晶試料の場合 と同じく、ドメイン壁近傍では Nb-0 間距離 が伸長しており、結晶格子やその対称性が局 所的に変化しており、隣り合ったドメインと は異なる自発分極方位をもちことが予想さ れた。また、セラミックス試料面に渡るドメ イン壁と電場印加方向とのなす角度につい て統計分布を調べることも可能となり、セラ ミックス粒子内のドメイン壁の評価に顕微 ラマン散乱分光法が応用できることを新た に提案できた。

更に、遠赤外反射スペクトル測定によって ドメインとドメイン壁近傍の分離測定を行 ったところ、算出した複素誘電率の線マッピ ングがドメイン幅と一致して連続的に変化 することが見出され、特にドメイン壁近傍で はラマン散乱分光で予測した通りに誘電率 が増加していることを確認した。

(3)高負荷耐性評価

多結晶セラミックス NKN 試験片の高負荷耐 性を評価した。計測は温度 25 ℃ および印加 電界 0.5 kV/mm、1 Hz の条件で行った。圧縮 応力の増加に伴い daは増加し、約60 MPaの 圧縮応力下で極大値 196 pm/V を示した。さ らに応力を印可すると、機械的損傷(マイク ロクラックの形成)が始まり、圧電特性は単 調な減少に転じた。その極大値は無負荷時 (d33=91 pm/V)と比べ2倍以上大きな値であっ た。このように d₃₃ が増加した理由は、圧縮 応力によって部分的な脱分極が生じ、非180° ドメインの寄与が閾値(=約 60 MPa)で最も 大きくなったことが考えられる。一方、最大 圧縮応力からの除荷過程では、圧縮応力の減 少に伴い極大値は観測されず、初期値に向か ってほぼ単調に回復したことから、機械的損 傷を受けながらも、いったん脱分極された電 気双極子が、除荷過程で自発分極方向へバッ クスイッチングすることを確認した。

一方、測定周波数 1 Hz で固定しつつ、印 加電界強度を抗電界以下の 0.1-0.8 kV/mm の 範囲で変化させた場合の圧縮応力依存性も 調べた。その結果、低い電界強度の場合に比 べ、高い電界強度では部分的な脱分極が進み 易く、それによって生じた非 180°ドメインを 回転させる駆動力が大きいことが確認でき た。

そこで、温度負荷も含めた圧電定数 d₃₃の 圧縮応力依存性を調べた。前述の全温度域に おいて圧縮応力が増加するにつれて d₃₃は増 加し、極大値を示した後に減少するといった 共通の傾向が現れた。さらに、高温下ではニ オブ系材料特有のせん断方向における機械 的性質の特徴が現れた。すなわち、一軸方向 の圧縮応力負荷であってもせん断方向へひ ずみ易く、比較的に低圧縮応力であっても高 温環境下では脱分極が進行しやすいことが 明らかになった。

最終的に、各種実験条件を精密制御し、均 ー微細組織となる高密度焼結体の合成条件 を決定することに取り組み、そのドメイン構 造を評価した。特に、二段階焼結法と低酸素 分圧焼成法を最適に組み合わせることによ って、微構造を均質化した各種ニオブ系無鉛 圧電セラミックスの合成が可能であること を新たに見出し、その平均粒子径と電気特性 に強い相関があること、さらに粒子サイズ効 果を明確に認めるに至った。

続いて、高負荷耐圧試験を実施した結果、 従前製法のニオブ系無鉛圧電セラミックス の共振点はハード系 PZT と同じく温度上昇に つれて低周波側にシフトし、材料が軟化し、 最終的にマイクロクラック形成が観察され たものの、平均粒子系を 1/3 に減じた改良型 セラミックスはクラック形成に対して強い 材料構造であると同時に高負荷耐性に優れ ており、斜方相-正方晶間の相転移温度近傍 では電気的疲労現象を示さず、抗電界値 *E*。 もほとんど変化しないことを見出した。その 結果、ニオブ系斜方晶の圧電特性を支配する 要因(特有のドメイン構造)を解明し、高負 荷条件に適したセラミック組織構造を新た に提案するに至った。

以上の成果詳細は下記のとおり発表した。

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計18件)

A. Martin and <u>K. Kakimoto</u>, Temperature Dependence of Mechanical degradation in Lead-free Alkali Niobate Ceramics under Unipolar Loading, Matter. Lett., Vol. 175, pp. 300-304 (2016),査読有

A. Martin and <u>K. Kakimoto</u>, Electric Fatigue Process in Lead-free Alkali Niobate Ceramics at Various Pressures and Temperatures, Jpn. J. Appl. Phys., Vol. 54, No. 10S, 10NB06 (2015),査読有

Y. Taniguchi and <u>K. Kakimoto</u>, Microscopic Raman Spectroscopy in the Vicinity of Domain Wall of (Na,K)NbO₃ Piezoelectrics, Jpn. J. Appl. Phys., Vol. 54, No. 10S, 10ND09 (2015),査読有.

K. Kato, <u>K. Kakimoto</u>, K. Hatano, K. Kobayashi and Y. Doshida, Lead-free Li-modified (Na,K)Nb03 Piezoelectric Ceramics Fabricated by Two-Step Sintering Method, J. Ceram. Soc. Jpn., Vol. 122, No. 6, pp. 460-463 (2014),査読有.

<u>K. Kakimoto</u>, S. Ishihara and M. Watanabe, Engineering of Lead-free Piezoelectrics in Alkali Niobate Ceramic System: Improvement in Density by Two-step Mixing Process, Key Eng. Mater., Vol. 616, pp. 108-113 (2014),査読有.

A. Martin and <u>K. Kakimoto</u>, Effect of Domain Structure on the Mechanical and Piezoelectric Properties of Lead-free Alkali Niobate Ceramics, Jpn. J. Appl. Phys., Vol. 53, No. 9S, p. 09PB09 (2014), 査読有.

K. Tsuchida, K. Kakimoto, and I.

Kagomiya, Effect of Crystal Growth Direction on Domain Structure of Mn-Doped (Na,K)NbO₃ Crystal, Jpn. J. Appl. Phy., Vol. 52, No.9, 09KD02 (2013),査読有.

S. Koide and <u>K. Kakimoto</u>, Crystallographic Orientation of (Li,Na,K)NbO₃ Lead-free Piezoelectric Crystal, Key Eng. Mater., Vol. 566, pp. 68-71 (2013),査読有.

K. Tsuchida, <u>K. Kakimoto</u>, I. Kagomiya, Influence of a 60° Domain Structure on the Orthorhombic Niobate-based Piezoelectric Property, J. Kor. Phys. Soc., Vol.62, No.7, pp.1051-1054 (2013),査読有.

〔学会発表〕(計77件)

K. Ogo, M. Weiss, S. Rupitsch, R. Lerch and <u>K. Kakimoto</u>, Characterization of Lead-free Alkali Niobate Piezoceramics by the Inverse method, IEEE International Ultrasonics Symposium, 2015.10.21-24, Taipei

Υ. Taniguchi and K. Kakimoto, Spectroscopic Analysis Domain of Structure for Lead-free (Na,K)Nb03 Piezoelectrics. 11th Pacific Rim Conference of Ceramic Societies, 2015.8.30-9.4, Jeju, Korea

A. Martin and <u>K. Kakimoto</u>, Electric Fatigue Process of Lead-free Alkari Niobate Ceramics under Pressure and Temperature, 32th Meeting on Ferroelectric Materials and Their Applications, 2015.5.20-23, Kyoto

K. Yoshida and <u>K. Kakimoto</u>, Mechanism of High-temperature Electrical Conduction for (Na,K)NbO3-based Ceramics under DC Bias, 6th U3 Materials Design Forum, 2015.3.30-31, Osaka

Y. Sumiya, <u>K. Kakimoto</u>, T. Fey and P. Greil, Characterization of Porous LNKN Ceramics Prepared by Foam Impregnation and Pressing, 4th International Symposium on Ceramics Nanotune Technology, 2015.3.2-4, Nagoya

<u>K. Kakimoto</u>, Alkali Niobate Perovskite for Lead-free Piezoelectrics, Materials Science & Technology 2014, 2014.10.12-16, Pittsburgh, USA

A. Martin and <u>K. Kakimoto</u>, Estimation of Various Mechanical Characteristics of Differently Poled Lead-free Lix(Na0.5K0.5)1-xNb03, 6th International Workshop on Advanced Ceramics, 2014.9.28-30, Erlangen, Germany

A. Martin and <u>K. Kakimoto</u>, Mechanical

Properties of Lead-free Alkali Niobate Ceramics, 3rd International Symposium on Ceramics Nanotune Technology, 2014.3.2-4, Nagoya

<u>K. Kakimoto</u>, Processing and Microstructure Control of (Na,K)Nb03-based Lead-free Piezoelectrics, Electronic Materials and Applications 2014, 2014.1.22-24, Orland, FL, USA

<u>K. Kakimoto</u>, Engineering of Lead-free Piezoelectrics in Alkali Niobate System, 5th International Symposium on Advanced Ceramics, 2013.12.9-12, Wuhan, China

〔図書〕(計0件) なし

〔産業財産権〕 出願状況(計0件) なし 取得状況(計0件) なし

〔その他〕 なし

6.研究組織

(1)研究代表者
柿本 健一(KAKIMOTO KEN-ICH)
名古屋工業大学・工学研究科・教授
研究者番号:40335089

(2)研究分担者 なし

(3)連携研究者 なし