科学研究費助成事業

国立研究開発法人国立環境研究所・地域環境研究センター・主任研究員

研究者番号:10282815

研究代表者

交付決定額(研究期間全体):(直接経費) 3,000,000円

研究成果の概要(和文):イソプレンの光酸化で生成する二次有機エアロゾル中の指標物質である2-メチルテトロール (2MT)の生成機構を明らかにする目的で、イソプレン/NOx光酸化のチャンバー実験を行って相対湿度やシード粒子添 加の効果を調べた。実験結果から、水分の存在が2MT生成に重要であること、2MTの生成は酸または塩基で触媒されるこ とを明らかにした。2MTはイソプレン/NOx光酸化で生じるよ気テルの加水分解で生成すると考えられる。さらに、乾燥 条件で生成したエアロゾルの水溶液を作成して2MTの生成速度を調べた。エアロゾル水溶液に硫酸を加えた場合、一日 以内の時間スケールで2MTの生成が起こりうることが示された。

研究成果の概要(英文):In order to elucidate formation mechanism of 2-methyltetrol (2MT) which is the molecular maker of isoprene secondary organic aerosol, we investigated the effects of RH and particle acidity on 2MT formation conducting a series of the laboratory chamber experiments on isoprene/NOx photooxidtaion. The existence of water was critical for 2MT formation, and 2MT formation was catalyzed by both acid and base. These results suggest that 2MT is produced by the hydrolysis of the esters formed from isoprene/NOx photooxidation. We also studied the rate of 2MT formation in the aqueous solution of the isoprene secondary aerosol formed under dry conditions. It was shown that 2MT can be produced within a time scale of 1 day in the aqueous solution of isoprene aerosol under acidic conditions.

研究分野:大気化学、エアロゾル化学

キーワード: 生物起源揮発性有機化合物 二次有機エアロゾル 不均一反応 水溶液相反応 有機硝酸エステル ス モッグチャンバー 液体クロマトグラフ質量分析計 エアロゾル質量分析計

1.研究開始当初の背景

大気中の揮発性有機物の気相酸化で生成 する二次有機エアロゾル(SOA)は大気微小 粒子の主成分であり、その直接・間接効果に よる気候への影響が懸念される(Hallquist et al., 2009)。全球で生成する SOA の約 90% が、生物起源揮発性有機物(BVOC)に由来す ると言われる(Henze and Seinfeld, 2006)。 イソプレンは、単一の炭化水素としては、全 球規模で最大の SOA 前駆物質と考えられてい る。大気化学輸送モデルで予測される有機エ アロゾル(OA)の濃度は一般に観測値よりも 低くなるが、この理由の解明が当該分野での 中心的な課題になっている。

最近、SOA の生成や変質のプロセスとして、 これまでに知られている気相化学反応以外 に粒子相および水溶液相化学反応も重要で あることが分かってきた(Carlton et al., 2009)。このような反応として、カルボニル 水和物が関与するシュウ酸生成反応のほか (Myriokefalitakis et al., 2011)。BVOC の NOx 光酸化で生成する硝酸エステルの加水分 解もある(Darer et al., 2011)。都市近郊 では、OA の 10-19%を有機硝酸塩が占める場 合がある(Farmer et al., 2010)。

代表者は 2008 年に行った研究で、イソプレンの NO_x 光酸化のチャンバー実験で生成する SOA を LC/MS で分析し、イソプレン由来の有機硝酸塩を検出した(Sato, 2008)。さらに、有機硝酸塩の加水分解によって、実大気中のイソプレン由来 SOA の指標物質として知られる 2-メチルテトロール(2MT)が生成すると示唆した。2MT の生成プロセスを理解することは、指標物質の観測結果からイソプレン由来 SOA の全量を予測する上で重要である。

その後の研究から、エポキシ化合物を中間体 とする非 NOx 存在下での 2MT 生成と並び (Paulot et al., 2009) NO_x存在下では上記 の有機硝酸塩の加水分解による 2MT 生成が重 要と考えられている(Claeys et al., 2010)。

有機硝酸塩の加水分解による2MT生成のメ カニズムは明らかになっているものの、加水 分解速度やそれに対する湿度条件や粒子の 酸性度条件など反応場の性状が及ぼす影響 については情報が不足している。

2.研究の目的

 (1) Edney et al. (2005)は RH=30%の条件 でイソプレン-NO_x-SO₂-空気光照射系の実験 を行い、SO₂の添加によって 2MT の収率が増加 すると報告している。本研究では乾燥条件 (RH < 1%)で検証を行うとともに、水溶液 中での 2MT の生成速度を調べる目的で、SO₂ 無の実験で生成した SOA の水溶液に酸または 塩基を添加して 2MT の濃度変化を調べた。

(2)イソプレンの NO_x光酸化による 2MT の 生成に対する相対湿度、酸および塩基の効果 を調べる目的で、テフロンバッグを用いて加 湿条件(RH~70%)の実験を行った。

(3)酸触媒粒子相反応が液相反応か表面反応かを調べる目的で、イソプレンの光酸化生成物に硫酸エアロゾルを作用させることによる OA 濃度の変化を時間分解測定した。 (4)今後の OA 予測モデルの開発の方向性を明らかにする目的で、モデルの研究者と不均一反応および水溶液反応による SOA に関する議論を行った。

3.研究の方法

(1)2MT 生成速度の測定

表 1 ステンレスチャンパー(S)およびテフロンパッグ(T)を用いて行った実験

run	反応系	初期濃度					備考
		i sop	NO	SO ₂	NH_3	CH ₃ ONO	
		ppb	ppb	ppb	ppb	ppb	
S1	isop/NO/CH ₃ ONO+light	2016	505			10	粒子捕集法検討
S2	isop/NO/CH ₃ ONO+light	2030	507			10	粒子捕集法検討
S3	isop/NO/CH ₃ ONO+light	2023	512			10	粒子捕集法検討
S4	isop/NO/SO ₂ /CH ₃ ONO+light	2012	507	185		10	
S5	isop/NO/CH ₃ ONO+light	2061	528			10	126 分に 200 ppb の S0₂添加
S6	isop/NO/CH ₃ ONO+light	2026	526			10	
S7	isop/NO/SO ₂ /CH ₃ ONO+light	2012	505	184		10	
S8	isop/NO/CH ₃ ONO+light	2001	508			10	114 分に 50 ppb の SO₂添加
S9	isop/NO/CH ₃ ONO+light	2019	502			5	
S10	isop/NO/CH ₃ ONO+light	2023	514			5	138 分に硫酸粒子を噴霧
S11	isop/NO/CH ₃ ONO+light	995	256			5	
S12	isop/NO/SO ₂ /CH ₃ ONO+light	996	256	184		5	
S13	isop/NO/SO ₂ /CH ₃ ONO+light	997	248	116		5	
S14	isop/NO/SO ₂ /CH ₃ ONO+light	991	255	66		5	
S15	isop/NO/CH ₃ ONO+light	3794	978			5	
S16	isop/NO/CH ₃ ONO+light	953	264			5	初期に硫酸粒子を添加
T1	isop/NO/CH ₃ ONO+light	2000	500			10	加湿条件
T2	$i sop/NO/SO_2/CH_3ONO+Iight$	2000	500	200		10	加湿条件
T3	isop/NO/NH ₃ /CH ₃ ONO+light	2000	500		600	10	加湿条件

乾燥条件の実験には国立環境研究所の6m³ ステンレスチャンバーを用いた (Sato et al., 2007)。本研究で行った実験の初期条件 を表1に示す。CH₃ONOは、反応開始のための OH ソースである。チャンバー内の温度は 25 ± 1 であった。光源として 300 nm 以下の 光をカットした Xe ランプ(各1 kW × 19 灯) を用いた。NO₂光分解速度0.29 min⁻¹であった。 ガスおよび粒子の濃度を、それぞれ FT-IR お よび SMPS でモニターした。また、エアロゾ ル化学成分をエアロゾル質量分析計 (Aerodyne, AMS) でモニターした。生成し たエアロゾルをテフロンフィルターに採取 した。捕集後のフィルターには内部標準とし てグルコース-¹³C₆を添加した。捕集した有機 物をメタノール中に超音波抽出し、抽出物を 1mLの蒸留水に転溶して分析サンプルとした。 分析サンプルを液体クロマトグラフ飛行時 間型質量分析計(Agilent, LC-TOF)で分析 した。2MT および 2-メチルニトロオキシブタ ントリオール (NTO)の Na⁺付加イオンを検出 した。

(2)相対湿度の効果

加湿条件の実験には 5.6 m³のテフロンバッ グを用いた。バッグは厚さ 50 µm の FEP 製 でサイズは 1.5 × 1.5 × 2.5 m³であった。光源 としてプラックライト(各 40 W × 100 灯)を 用いた。NO₂光分解速度 0.20 min⁻¹であった。 エアロゾル化学成分の濃度の時間変化を AMS で測定した。また、エアロゾルのオフライン LC-TOF 分析を行った。

(3)酸触媒反応の反応場

実験には、ステンレスチャンバーを用いた。 エアロゾル化学成分の測定にはAMSを用いた。 光照射開始の120~135分後に硫酸エアロゾ ルを添加し、その後の0A濃度の変化を調べた。硫酸エアロゾルの添加方法として、50~ 200 ppbのS02ガスを添加してその光酸化によって硫酸エアロゾルを生成する方法と、1.1 mMの希硫酸をネブライザーにより噴霧して

図1:ガスおよびエアロゾルの時系列

硫酸エアロゾルを直接添加する方法が採ら れた。

4.研究成果

(1) 2MT 生成速度の測定

非 SO₂存在下の実験で得られたガス状化合物やエアロゾルの濃度に関する時間変化を **図**1aに、SO₂存在下の実験で同様に得られた 結果を**図**1bに示す。左軸がガス状化合物の 濃度を表し、右軸がエアロゾル濃度を表す。 エアロゾル濃度のスケールは二つの図で異 なっている。ガス状化合物の時間変化にはSO₂ の有無による変化が見られた。SO₂存在下では、 エアロゾル濃度の立ち上がりが早まり、エア ロゾルの最大濃度は、非 SO₂存在下の 36 倍に なった。SO₂の添加によって、OA の生成が大 きく促進される可能性がある。

2MT および NTO 濃度の分析結果を**図**2 に示 す。SO2 存在下の 2MT 濃度(0.54 µgm⁻³)は、 非 SO₂存在下(0.24 µgm⁻³)の2.3 倍であっ た。Edney et al. (2005)は、SO₂存在下の 2MT 濃度は、非 SO₂存在下の 63 倍になると報告し た。SO₂の添加による増加の傾向は同じであっ たが、既報ほど大きな効果は見られなかった。

図3は、非SO2存在下の実験で得られたサ ンプル水溶液に硫酸を添加した後の、2MT お よびNTOの水溶液中濃度の変化を追跡した結 果である。硫酸濃度は42 mM であった。硫酸 を添加したサンプル水溶液中の2-メチルテ トロール濃度は時間と共に増加した。検出さ れたNTOの加水分解のみが新たに生成した 2MT のソースだと仮定すると、42 mM の硫酸 水溶液中におけるNTOの加水分解速度は 3.8 x 10⁻⁵ s⁻¹ であった。これは寿命に換算 すると7.3 時間に対応する。

硫酸を添加した水溶液に関する 2MT 濃度の 時間変化の結果を、アンモニア(23 mM)を 添加した場合および何も添加しなかった場 合と比較した(図4)。2MT 濃度は、何も添加

図3:硫酸添加した水溶液中の指標物質濃度.

図 5: 各指標物質の濃度および SOA 中の含有率

しなかった水溶液ではほぼ一定であった。対 照的に、硫酸およびアンモニア水の添加によ って 2MT 濃度は増加した。2MT の生成は酸性 でも塩基性でも触媒された。

(2)相対湿度の効果

SO2 添加効果に関する本研究と Edney et al. (2005)の違いは相対湿度に一因があると考 えられる。 図5は、加湿条件と乾燥条件のチ ャンバー実験で生成した各指標物質の濃度 を比較した結果である。加湿条件における 2MT 濃度はいずれも乾燥条件よりも高く、さ らに加湿条件における SO,やアンモニア存在 下のチャンバー実験での 2MT 濃度は、酸性ま たは塩基性のガスを添加しない実験に比べ て増加した。特に SO2 添加による増加は顕著 であり Edeny et al. (2005)の結果を再現し た。2MT の SOA 中含有率の結果も、2MT 濃度 の結果と大体似た傾向であった。これらの結 果から、2MT の生成には水の存在が重要であ り、水溶液の実験と同様に 2MT 生成が酸と塩 基で触媒されることが確かめられた。全 OA 質量に占める 2MT の含有率は加湿酸性条件の ときに最大(18 wt%)となった。

(3)酸触媒反応の反応場

図6に乾燥条件のチャンバー実験でAMSに よって測定されたOA、硝酸エアロゾルおよび 硫酸エアロゾルの時間変化を示す。イソプレン-NO-空気-光酸化系の実験では(図6a)、照 射開始の70~80分後にイソプレンの光酸化 によって二次粒子が生成した。二次粒子中に

図6:エアロゾル化学成分の時間変化

は OA だけでなく硝酸エアロゾルも含まれて いた。硝酸エアロゾルは、NOx 存在下の光酸 化で生成した有機硝酸塩であると考えられ る。OA が生成した後に SO₂を添加した実験で は(図6b) SO2の添加後に、光酸化によって 硫酸エアロゾル粒子が生成し、硫酸の触媒作 用 (Surratt et al., 2007) により OA 濃度 が急激に増加した。SO
っ添加実験で得られた OA の粒径分布の時間変化を図7 に示す。SO2 添加前は一成分の粒径分布であったが、SO₂ の添加後には二成分の分布になった。粒径が 大きな成分は、既存の SOA 粒子が硫酸エアロ ゾルを取り込みながらその酸触媒作用によ って成長したものと考えられ、粒径が小さな 成分は硫酸エアロゾルによる新粒子生成と それよる酸触媒作用で生成・成長したものと 考えられる。履歴の違いによる組成分布への 影響は見られなかった。

OA 生成後に硫酸エアロゾル粒子を直接噴

図9:不飽和度を表す 値の時間変化

霧した実験では(図6c) 粒子を照射開始後 75~135 分の間噴霧し続けた。硫酸エアロゾ ル粒子を添加し続ける間は OA も増加し続け、 添加を止めると硫酸エアロゾルも OA も減少 に転じた。この結果は、触媒である硫酸が存 在する新鮮な粒子表面がなくなるためと考 えられる。

初期 SO2 濃度を変えてチャンバー実験を行い、粒子の表面積と生成濃度との関係を調べた(図8)。二次粒子生成後の平均粒子表面積と平均 OA 濃度との間に直線関係があった。以上に述べたいずれの結果も、酸触媒 SOA 生成では表面反応が重要な役割を果たすことを示している。

図9は、乾燥条件の実験においてAMSで測 定された OA の平均 値の時間変化である。

値は 0A の不飽和度を表す指標であり、 = m/z - 14n + 1 で表される (Bahreini et al., 2005)。 **図 9** に示すように、SO₂存在下では 値が減少した。この結果は、アルドール縮合 によって不飽和結合を持つオリゴマーが生 成することがその一因と考えられる。

(4)モデル研究に関する今後の課題 実験と並行して OA 予測のための VBS モデ ルを用いた検討が行われた。VBS モデルは有 機物の揮発性分布や有機物の逐次的な気相 酸化反応(エイジング)を考慮したモデルで あり、メキシコシティなどにおいて OA 予測 に成功している(Shrivastava et al., 2011)。 国内の都市や離島など 13 か所における冬季、 春季、および夏季の OA の観測結果と VBS モ デルを組み込んだ化学輸送モデルの計算結 果と比べたところ、モデルによる過小評価は 改善されたものの、まだ改善は十分でなく観 測/モデルの比は 1~5 程度であった(発表 論文 に詳述)。改善が十分でないのは、不 均一反応や水溶液相反応を考慮していない ことが一因であり、現在不均一反応を考慮し たモデルの構築を別課題で進めている。さら に本研究で対象としたような水溶液反応に ついても検討することが今後の課題である。

<引用文献>

Hallquist et al., Atmos. Chem. Phys., 9巻、2009、5155-5236 Henze and Seinfeld, Geophys. Res. Lett. 33 巻、2006、L09812 Carlton et al., Atmos. Chem. Phys., 9 巻、2009、4987-5005 Myriokefalitakis et al., Atmos. Chem. Phys., 11 卷、2011、5761-5782 Sato、Atmos. Environ.、42 巻、2008、 6851-6861 Darer et al., Environ. Sci. Technol., 45巻、2011、1895-1902 Farmer et al., Proc. Natl. Acad. Sci. USA、107 巻、2010、6670-6675 Paulot et al.、Science、325 巻、2009、 730-733 Claeys et al., Atmos. Chem. Phys., 10 巻、2010、9319-9331 Edney et al.、Atmos. Environ.、39 巻、 2005、5281-5289 Jacobs et al., Atmos. Chem. Phys., 14巻、2014、8933-8946 Sato et al., J. Phys. Chem. A、111 巻、 2007、9796-9808 Surratt et al., Environ. Sci. Technol., 41巻、2007、517-527 Bahreini et al., Environ. Sci. Technol., 39巻、2005、5674-5688 Shrivastava et al., Atmos. Chem. Phys., 11巻、2011、6639-6662

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計8件)

<u>Sato, K.,</u> Inomata, S., Xing, J.-H., Uchida, R., Imamura, T., Nakagawa, K., HIrokawa, J., Okumura, M., Tohno, S., Effect of OH radical scavenger on secondary organic aerosol formation from the isoprene ozonolysis、Atmos. Environ., 79 巻、2013、147-154、査読 有 DOI:10.1016/j.atmosenv.2013.06.036

Clark, C.H., Nakao, S., Asa-Awuku, A., <u>Sato, K.</u>, Cocker III, D.R., Real-time study of particle phase products from dark ozonolysis of -pinene and photo oxidation of isoprene using particle into liquid sampling directly coupled to a time of flight mass spectrometer (PILS-ToF), Aerosol Sci. Tech., 47 巻, 2013 、 1374-1382 、 査 読 有 、 DOI:10.1080/02786826.2013.844333 Inomata, S., Sato, K., Hirokawa, J., Sakamoto, Y., Tanimoto, H., Okumura, M., Tohno, S., Imamura, T., Analysis of secondary organic aerosols from ozonolysis of isoprene by proton transfer reaction-mass spectrometry, Atmos. Environ.、97 卷、2014、397-405、 読 右 杳 DOI:10.1016/j.atmosenv.2014.03.045 Morino, Y., Tanabe, K., Sato, K., Ohara, T. , Intercomparison of secondary organic aerosol models based on secondary organic aerosol to odd oxygen ratio in Tokyo, J. Geophys. Res.: Atmos., 119 巻, 2014, 13489-13505, 查読有、DOI:10.1002/2014JD021937 Sato, K., Jia, T., Tanabe, K., Morino, Y., Kajii, Y., Imamura, T., Terpenylic acid and nine-carbon multifunctional compounds formed during the aging of ozonolysis secondary -pinene organic aerosol, Atmos. Environ., 130 巻、2016、127-135、 査読有、 DOI:10.1016/j.atmosenv.2015.08.047 Nakayama, T., <u>Sato, K.</u>, Tsuge, M., Imamura, T., Matsumi, Y., Complex refractive index of secondary organic aerosols generated from isoprene/NOx photooxidation in the presence and absence of SO2, J. Geophys. Res.: Atmos.、120 巻、2015、7777-7787、査読 有、DOI:10.1002/2015JD023522 Morino, Y., Nagashima, T., Sugata, S., Sato, K., Tanabe, K., Noguchi, T., Takami, A., Tanimoto, H., Ohara, T., Model evaluation of PM2.5 chemical composition usina simultaneous measurement data over Japan, Aeros. Air Qual. Res.、15 巻、2015、2009-2023、 查読有、DOI:10.4209/aagr.2015.02.0120 谷本浩史、金谷有剛、持田陸宏、廣川淳、 猪俣敏、松本淳、藪下彰啓、江波進一、 森田明弘、橋本健朗、竹川暢之、宮崎雄 三、森野悠、中山智喜、佐藤圭、坂本陽 介、竹谷文一、羽馬哲也、加藤俊吾、河 村公隆、秋元肇、有機エアロゾルに関す る不均一反応研究の現状と課題:大気化 学と理論化学の連携、大気化学研究、34 巻、2016、22-28、査読有

[学会発表](計6件) <u>佐藤圭</u>ほか、イソプレン-NOx-SO2 光酸化 系で生成する二次有機エアロゾルの化学 組成、第 30 回エアロゾル科学・技術研究 討論会、2013 年 8 月 27~29 日、京都大 学吉田キャンパス(京都府京都市) <u>Sato, K.</u> et al.、Effect of acidity on the chemical composition of secondary aerosol from the isoprene/NOx photooxidation: Measurements using an aerosol mass spectrometer. American Association for Aerosol Research 32nd Annual Conference、2013年9月30~10 月4日、Portland (U.S.A) 佐藤圭ほか、イソプレン光酸化における 酸触媒粒子相二次有機エアロゾル生成、 第31回エアロゾル科学・技術研究討論会、 2014 年 8 月 6~8 日、筑波大学筑波キャ ンパス(茨城県つくば市) 佐藤圭ほか、イソプレン/NO 光酸化から のテトロール生成に対する相対湿度の効 果、日本地球惑星連合 2015 年大会、2015 年5月24~28日、幕張メッセ国際会議場 (千葉県千葉市) Sato, K. et al., Effects of humidity. acid and base on 2-methyltetrol from isoprene/NO formation photo-oxidation \$ 9th Asian Aerosol Conference、2015 年 6 月 24~27 日、金 沢東急ホテル(石川県金沢市) Sato, K., Effects of humidity, acid, and base on isoprene SOA molecular marker formation under high NOx conditions, Chinese Research Academy of Environmental Sciences AEI Seminar (招待講演) 2015 年 8 月 11 日、Beijing (China)

〔図書〕(計0件)

〔産業財産権〕 〇出願状況(計0件) 〇取得状況(計0件)

〔その他〕該当なし

- 6.研究組織
- (1)研究代表者
 佐藤 圭(SATO, Kei)
 国立研究開発法人国立環境研究所・地域環
 境研究センター・主任研究員
 研究者番号:10282815

(2)研究分担者 該当なし

(3)連携研究者
 森野 悠(MORINO, Yu)
 国立研究開発法人国立環境研究所・地域環
 境研究センター・主任研究員
 研究者番号:50462495

(4)研究協力者
李 紅 (LI, Hong)
中山智喜 (NAKAYAMA, Tomoki)
田邊 潔 (TANABE, Kiyoshi)
今村隆史 (IMAMURA, Takashi)