交付決定額(研究期間全体):(直接経費)

科学研究費助成事業

研究成果報告書

平成 2 8 年 1 0 月 3 日現在
機関番号: 14303
研究種目: 基盤研究(C)(一般)
研究期間: 2013~2015
課題番号: 2 5 4 4 0 0 6 8
研究課題名(和文)酸化的リン酸化 - 活性酸素の同時可視化及びミトコンドリアの自己組織化機構の解明
研究課題名(英文)Visualization of oxidative phosphorylation – reactive oxygen species and its application to self-organization of mitochondrion
研究代表者
柄谷 肇(Karatani, Hajime)
京都工芸繊維大学・分子化学系・教授
研究者番号:1 0 1 6 9 6 5 9

研究成果の概要(和文):研究成果は以下のように要約される:(i)発光細菌由来蛍光タンパク質(Y1-Yellow及びY 1-Blue)の蛍光能を調べた結果、ミトコンドリアシグナル配列が蛍光特性に影響しないことを示した。(ii)発光細菌 ルシフェラーゼコード遺伝子及びホタルルシフェラーゼコード遺伝子大腸菌発現系の改善を進めると共にそれらを融合 した。(iii)過酸化水素に対して感受性を有する生物発光及び蛍光関連遺伝子を構築し大腸菌発現系を構築すると共 に過酸化水素の生細胞可視化に有用であることを示した。(iv)形質転換発光大腸菌コロニーの発光を詳しく調べ、 細胞集団における呼吸活性の可視化に生物発光が有効であることを示した。

4,000,000円

研究成果の概要(英文):Results obtained are summarized as follows: (i) From the fluorescent characterization of the recombinant MT-Y1-Yellow and MT-Y1-Blue originating from luminous bacterium, it was found that the mitochondrial signal sequence (MT) does not affect their fluorescence properties; (ii) the expression systems for bacterial luciferase coding gene cassette and firefly luciferase coding gene were improved to yield these luciferases efficiently and these luciferase coding genes were fused; (iii) hydrogen peroxide sensitive genes, both of which are leading to the production of either bioluminescence or fluorescence, have been developed and applied for visualization of hydrogen peroxide in living Escherichia coli; (iv) Based on the further investigation into the bioluminescence ring pattern appearing in the colony of the bioluminescent E. coli, it was found that there is a possibility that the respiratory activity in living cells can be characterized on the basis of bioluminescence.

研究分野: 生物分子科学

キーワード: 生物発光 タンパク質 発光細菌 大腸菌 ミトコンドリア 酸化的リン酸化 活性酸素種 ルシフェラーゼ 蛍光 1. 研究開始当初の背景

主に呼吸鎖電子伝達系 (ETC) とアデノシ ン三リン酸 (ATP) 合成酵素が共役する酸化 的リン酸化過程において生体エネルギーが 生産される。酸化的リン酸化の場は、真核細 胞ではミトコンドリア(MT)であり、他方 大腸菌のような原核細胞の場合、細胞膜呼吸 鎖がその役割を担う。生産されるエネルギー は一旦 ATP として保存される。 還元型ニコチ ンアミドアデニンジヌクレオチド (NADH) の酸化反応から開始される ETC では電子タ ーミネーターとして最終的に酸素分子が水 分子に還元される。同時に活性酸素種(ROS) が副産物として生じることもある。比較的多 く産生される ROS として、ETC から漏れ出 た電子による酸素分子の還元反応産物スー パーオキシドアニオン (O⁻⁻) とその不均化反 応によって生じる過酸化水素(H₂O₂)である と捉えることもできる。ROS は生体の恒常性 の維持において不可欠であるものの、呼吸系 阻害等により一時的あるいは局所的に ROS が大量に生じると、MT あるいは細胞は損傷 を受けることもある。スキーム1に呼吸阻害 と ROS の発生の関係を概略的に示す。

細胞膜呼吸系酸化的リン酸化阻害

 $0_{2} + e^{-} \rightarrow O_{2}^{-\cdot}$ $2O_{2}^{-\cdot} + 2H^{+} \rightarrow H_{2}O_{2} + O_{2}$ $\rightarrow \rightarrow \rightarrow \text{ other ROS}$

スキーム 1 予想される酸化的リン酸化阻 害関連活性酸素種 (ROS) 生成機構.

エネルギー生産拠点であり、且つ ROS の主 要な発生源でもある酸化的リン酸化の動的 過程の観測法の開発は、生命科学において興 味深い課題であると着想され、本研究が計画 された。

尚、本研究課題は科研費研究挑戦的萌芽 (課題番号 23654148)及び民間助成金研究 (第8回 KRI 萌芽研究)と一部重複する。

2. 研究の目的

原核生細胞さらには細胞小器官 MT における酸化的リン酸化過程及びそれと密接な関係にある ROS の生物発光・蛍光発光に基づく可視化を目指した。また構築する手法に基づき、ROS が細胞膜呼吸系あるいは酸化的リン酸化過程に及ぼす効果を調べることも目指した。

3. 研究の方法

研究の流れは以下のように要約される:(i) MT シグナル配列を有する ROS プローブと して期待される発光細菌由来蛍光タンパク 質(Y1-Yellow 及び Y1-Blue)の蛍光能につ いて *in vitro* 系のデータを獲得する。(ii) 生 物発光に直接関連する遺伝子として、 *Photobacterium phosphoreum* bmFP よりクロー ニングした *lux* 遺伝子(*luxCDABFEG* 遺伝子 カセット;以下 *bmFPlux*)及びホタルルシフ ェリンコード遺伝子(*luc* 遺伝子)を用い基礎的な発現系の構築及び改良を進めた。(iii) ROS 感受性を有する *KatG'-bmFPlux* 及び *KatG'-Y1-Blue*を構築し、特に H₂O₂ 感受性に ついて評価すると共に H₂O₂ の生細胞可視化 を検討した。(iv) 大腸菌を MT モデルとみ なし、高酸素状態における発光挙動の観測結 果に基づいて細胞集団における酸化的リン 酸化過程の生物発光可視化を試みた。

4. 研究成果

(i) MT シグナル配列を有する Y1-Yellow お よび Y1-Blue の *in vitro* 蛍光特性:

これまでに MT-Y1-Yellow 及び MT-Y1-Blue は MT 得意的に蛍光を発することは実証した が、サイトゾルにおいて蛍光性を有するかに ついて不明であった。今回、*in vitro* 蛍光特性 を評価することによって上記の課題を実証 した。実証実験では先ず MT-Y1-Yellow 及び MT-Y1-Blue の大腸菌発現系を構築し、目的タ ンパク質の単離精製法の確立を目指した。

具体には MT-Y1-Yellow および MT-Y1-Blue をコードする遺伝子を上記科研費研究で構 築した発現ベクター (pYES2/CT-MCT-Y1-Yellow 及び pYES2/CT-MCT-Y1-Blue)を鋳型 とし、以下のプライマーを用いて調製した。 pET-mt-Xbal-F (forward 共通):

GTGAGCGGATAACAATTCCCCTCTAGAATGTTGTGCC AACAAATGATC

pET-mt-Y1-Blue-Xho I -R (MT-Y1-Blue) :

GGTCTATATCGGCCATTGACCGAGCTCGTGGTGGTGG TGGTGGTGATT

pET-mt-Y1-Yellow-Xho I -R (MT-Y1-Yellow) : AATTACGGTTGGTTACGACCGAGCTCGTGGTGGTGGT GGTGGTGATT

得られた目的遺伝子を大腸菌用発現ベクタ ーpETBlue-2 にクローニング後、大腸菌を形 質転換した。形質転換大腸菌を大量培養し Y1-Yellow 及び Y1-Blue をカラムクロマトグ ラフィーに基づいて単離精製した。単離精製 タンパク質の蛍光測定の結果、MT シグナル 配列の有無と無関係に蛍光タンパク質の蛍 光スペクトル(図 1)が観測されたことから サイトゾルにおいても蛍光性を有すること が示唆された。

図 1 Y1-Yellow(黄色)及び Y1-Blue(青色) の蛍光スペクトル.実線, MT シグナル配列 フリーY1-Yellow(黄色)及び Y1-Blue(青 色);破線, MT 配列を有する.励起波長/nm,

Y1-Blue, 400; Y1-Yellow, 460.

特に Y1-Yellow の場合、上述の結果はまた 発現誘導した MT-Y1-Yellow のほぼ全てが MT に移行することを示唆するものである。 しかしながら、これまでに ROS プローブと しての Y1-Yellow の有用性は示されたものの、 哺乳類細胞への応用は今後詳細な検討を要 する。

(ii) *bmFPlux、luc* 遺伝子発現系および *lux-luc* 融合遺伝子の構築

luc 遺伝子を大腸菌における安定発現の検 討を進めた。既に国内メーカーによりヒト用 に開発された *luc* 遺伝子であるが、開発メー カーの許可を得て大腸菌用にコドン最適化 を図り、pETBlue-2 に再構築して形質転換に 供した。一方、*bmFPlux*の発現条件の最適化 を検討し、特に25℃あるいはそれより低温条 件でルシフェラーゼの発現効率と細胞密度 当たりの発光が強まることを示した。*luc* 遺 伝子 *lux* 遺伝子及び発現系で得られた生物発 光及びその波長分布を図2に示す。

図2 E. coli-luc 及び E. coli-bmFPlux より粗抽 出したルシフェラーゼが触媒する生物発光. 左図, 均一溶液系における in vitro 発光;右図, in vitro 生物発光スペクトル.

luc 遺伝子を有する大腸菌の生物発光は野 生型と同様な発光色を示した。また弱酸性領 域において強度は低下するも赤色発光が認 められた。*E. coli-bmFPlux* はこれまでにも発 光を観測したが、発現条件の改善により比較 的収量が大きい発現系を得た。それぞれのル シフェラーゼは単離精製し、一部は *in vitro* ルシフェラーゼ反応の実験に供した(研究成 果 学会発表 ⑤, ⑩)。

さらに *lux-luc* 融合遺伝子の構築を進めた。 酸化的リン酸化過程では ETC 上流の NADH と ATP の量は互いに逆の関係にあることか ら、ATP を基質とするホタルの発光と、NADH 脱水素酵素と共役する細菌生物発光は位相 をずらして出現するものと予想された。また それらの発光挙動を同時に調べることによ り酸化的リン酸化と量的変動が可視化でき るものと着想した。そこで自家発光をコード する *luxCDABFEG* 遺伝子カセットと *luc* 遺伝 子の融合を検討した(図 3)。 遺伝子の融合は In-Fusion 法に基づいて進 めた。

図 3 *luxCDABFEG* 遺伝子カセット (7158 bp) と *luc* 遺伝子 (1638 bp)の In-Fusion 反応に基 づく融合及び pETBlue-2 へのクローニング.

プライマー:

luxC forward primer AGGAGATATACC ATGATAAAGAAAATCCCAATGAT luxG reverse primer AATATATTCCTTTGG TCACATATATGCAAAAGCATCA luc 遺伝子 forward primer CCAAAGGAATATATT ATGGTCATGGAGGGAAACATCGTGG luc 遺伝子 reverse primer GGTGGTGGTGCTCGAG CATCTTTGCACGAGGCTGTTT 鋳型:pETBlu-2-bmFPlux 及び Firefly luciferase-pUC minus

また発現用プラスミドベクターのサイズ (約 3.6kbp) と比べて融合遺伝子のサイズは 約 10 kbp と大きく安定性に問題もあると予 想されたことから *luxCDABFEG* 遺伝子カセ ットよりルシフェラーゼのみをコードする 遺伝子 *luxAB* (2107 bp) 断片を PCR で増幅 し、*luc* 遺伝子との融合についても検討も進 めた。

用いたプライマー:

lucFNcoI : TTAAGAAGGAGATATACATGGTCATGGAGGGA lucR BamHI : CGCCTGTACAGAATTCGTTACATCTTTGCACG luxF AseI : AACGAATTCTGTACAGGATGAAGTTTGGAAAT luxR NotI : CGTGTATACAGCTGTGCTTACGAGCTTGGTAA

図 4 *luxAB* 遺伝子 (2107 bp) と *luc* 遺伝子 (1638 bp) の In-Fusion 反応に基づく融合及 び pETBlue-2 へのクローニング.

(iii) ROS 感受性生物発光大腸菌(a)及び 青色蛍光大腸菌(b)の構築と評価

(a) H₂O₂ 感受性生物発光大腸菌:(研究成果

成果, 学会発表①, ②, ④, ⑥, ⑧, ⑨, ⑪)

ROS 感受性 lux 遺伝子の概念を図5に示す。

図 5 ROS 感受性 lux 遺伝子の概念図とルシフ ェラーゼ反応メカニズム.

図5に示したように、ROS が遺伝子誘導の トリガーとなる系の構築を目指した。特に本 研究では、H₂O₂が発現誘導物質産生のトリガ ーとなるカタラーゼコード遺伝子プロモー ター(KatG'遺伝子)と bmFPlux を pETBlue-2 プラスミドベクターにクローニングした (pETBlue-2-KatG'-bmFPlux)。さらに同プラ スミド遺伝子で形質転換して生物発光大腸 菌 (E.coli-KatG'-bmFPlux) を構築した。すな わちH₂O₂が生物発光誘導のトリガーとなる。 実験では標準物質として添加した H2O2 ある いは毒性物質として添加した重金属イオン と発光強度の関係を評価した。コントロール として、上述の E.coli-bmFPlux を用いた。KatG' は大腸菌由来であり、すでに知られている塩 基配列を基にして合成を委託した。

pETBlue-2-KatG'-bmFPlux の調製は二段階 に分けて進めた。先ず Agel 及び Xbal を用い て線状化した pETBlu-2 に同制限酵素で処理 した KatG'を挿入した。この段階で同時に pETBlue-2のT7プロモーター領域を削除した。 次に Ncol 及び KpnI を用いて上の段階で得 たプラスミドを処理すると共に同制限酵素 で処理した bmFPlux を In-Fusion 反応により 融合した。

用いたプライマー 第一段プライマー: katG'Forward Agel: CATAAGTGCGGCGACGACGAAATGAGGGCGGG katG'Reverse Xbal: GAATGGAAATTGTAAGTTCCTCCTACAGTGTT 第二段: bmFPlux Forward Ncol: TTAAGAAGGAGATATACATGATAAAGAAAATC bmFPlux Reverse Kpnl: TCGAACGCGTATCGATGTCACATATATGCAAA

種々の濃度の H_2O_2 を添加して、発光応答 を調べた結果、添加 H_2O_2 によって生物発光 が誘導されることを確認した。測定条件を変 化させながら発光応答を調べた結果、25℃あ るいはそれよりも低温条件において且つ対 数増殖期前半において H_2O_2 に対応した発光 応答を示した。生細胞内では恒常的に微量の H_2O_2 が生じることからこれがバックグラウ ンド生物発光として見られた(図 6)。

図 6 時間を変数とする添加 H₂O₂ 濃度と誘導 された発光強度の関係(25℃).

図 6 より、細菌生物発光が H_2O_2 のシグナ ルとして放射されたものと捉えることがで きる。要因として添加した H_2O_2 が直接 KatG' に作用したものではなく、添加した H_2O_2 の 分解産物が呼吸鎖に影響し ETC 近傍におい て H_2O_2 を一時的に高濃度にしたものと考え られる。 H_2O_2 高濃度条件における発光強度の 大きな低下はネクローシスによるものと考 えられる。添加 H_2O_2 濃度ゼロで見られる発 光は生細胞内で恒常的に産生する H_2O_2 によ るものと考えられる。

また添加する H_2O_2 を一定濃度にし、 Cd^{2+} イオン濃度を種々変化させて観測された生 物発光を図7に示す。

図 7 一定濃度のH₂O₂(1×10⁻⁴ M)を含む系に 種々の濃度のCd²⁺を添加して観測される生物 発光と添加後経過時間との関係(25℃).

添加した Cd^{2+} は細胞に取り込まれ呼吸阻 害を惹起することが知られている。即ち Cd^{2+} の摂取による呼吸阻害によって H_2O_2 濃度が 細胞膜呼吸系近傍において一時的に増大す るものと予想される。図7に示すように、特 に1 ppm(8.9 μ M)のときに顕著な発光誘導 が記録された。観測された発光は呼吸鎖で生 じる H_2O_2 に誘導されたものと捉えられる。

図6及び7に示した結果は、呼吸阻害等に 起因してROSが産生すると、10分前後で*lux* 遺伝子が発現誘導され発光することを示し ている。さらに対数増殖期前半において発光 応答が顕著であることは、対数増殖期のよう な細胞分裂が活発な条件において、ROS が多 量に生じていることを生物発光として捕ら えたといえる。本系はまた毒性物質のバイオ アッセイに有用であることも判った。MT に おける実証実験は今後の課題として残るが、 可能性は示唆されたものと捉えられる。

(b) H₂O₂ 感受性青色蛍光大腸菌: (研究成 果成果, 学会発表③, ⑦)

設計の概念と基本的な構築法は ROS 感受 性生物発光大腸菌と同様である。以下に構築 に用いたプライマーを示す。また Y1-Blue コ ード遺伝子の増幅のための鋳型は科研費研 究(課題番号:21370071)で作製した pETBlue-2-Y1-Blueを用いた。

用いたプライマー

第一段プライマー 制限酵素サイト Agel 及び Xbal KatG' Forward Agel: CATAAGTGCGGCGACGACGAAATGAGGGCGGG KatG' Reverse Xbal: GAATGGAAATTGTAAGTTCCTCCTACAGTGTT Y1-Blue コード領域 第二段プライマー 制限酵素サイト Ncol 及び KpnI Y1-Blue Forward Ncol: TTAAGAAGGAGATATACATGTTTAAAGGTAAT Y1-Blue Reverse Kpnl: TCGAACGCGTATCGATGCCAATTACCTGCAAT

対数期のカルチャーに種々の濃度の H₂O₂ を添加して得られた結果を図 8 に示す。

図8 H₂O₂ (1×10⁻⁶ ~ 1×10⁻⁴ M)を添加して誘 導される大腸菌 Y1-Blue 蛍光. プレパラート の作製では同一のカルチャーより同量ずつ採 取し H₂O₂ を添加した. H₂O₂ 添加後経過時間: 上段, 3 min (プレパラート作製に要する時 間):下段 33 min. Exciter, 400 nm (V-2B); 露光, 1 s; ISO, 400; 色温度, 5600 K; 対物 レンズ, Planfluor100×; 減光フィルター, ND4.

恒常的に生じる H_2O_2 によってバックグラ ンド蛍光が生じるものの、 H_2O_2 感受性生物発 光大腸菌と同様に、添加した H_2O_2 に応答し て Y1-Blue 蛍光が観測された。特に 10^{-4} M の とき青色蛍光の時間変化は顕著であった。よ り高濃度の H_2O_2 を含む系では青色蛍光は見 られないが、これは上述の通りネクローシス によるものである。蛍光強度はカルチャーに も依存するが、ここで得た結果は、ROS の効 果は顕著に青色蛍光として反映されること を示唆する。しかしながら、哺乳類細胞で用 いるには、Y1-Yellow の系と同様に発現系を 詳しく検討する必要がある。

(iv) MT モデルとしての大腸菌の集団発光 の解析:(研究成果,その他雑誌論文①)

科研費研究課題(挑戦的萌芽:23654148) と関連して、*E.coli-bmFPlux*コロニーの発光 に及ぼす高濃度酸素分子の効果について解 析を進めた。実験は同科研費研究成果報告書 に記述した手法に基づき、十分に成長したコ ロニーの発光を、酸素濃度と時間の変数とし て観測した。図9に示すように、高酸素濃度 条件下、比較的再現性よく発光リングパター ンが観測される。具体には酸素供給時コロニ ー外側に出現する発光リングがコロニーの 中心に向かって半径を狭めるように伝播す る。

図 9 *E.coli-bmFPlux* 発光コロニー(直径 ~5mm)のラインプロファイル時間過程. A, 発光リングの中心方向への同心円的伝播. 横 軸,動径方向. 縦軸,リング位置における発 光強度. 図中数値は酸素供給を開始してから の経 過時間(s). ピクセル 距離(4.6 μm/pixel); B. 発光リング伝播の時間過程(横 軸上数値(A)位置における強度 vs. 時間). 中央, 30 s より右側,酸素からアルゴンにス イッチして観測される発光減衰過程.

時間を変数として記録したラインプロフ ァイルの解析から、発光細菌ルシフェラーゼ 反応が同期していることを仮説として提唱 した。この仮説と関連して、酸化的リン酸化 過程がある規則に従って秩序よく進行する ことも期待されるが、今後より詳しい実験と、 実験結果に基づく解析が求められる。しかし ながら、本研究において細菌生物発光が好気 的呼吸の可視化に有効であることが示され た。 総括:生物発光能を有する MT の構築及びその自己組織化に関する検討は期間内に達成できなかったが継続して取り組み、原核細胞と共に MT における ROS の量的変動と酸化的リン酸化活性との関係について、継続して検討を進める。

5. 主な発表論文等 〔雑誌論文〕(計 1件)

その他の雑誌論文

① <u>H. Karatani</u>, H. Kawakami, Y. Nishikawa, Dynamic flash of light pattern on a luminous colony induced by oxygenation: *Journal of Luminescence*, 29 (Suppl. 1): 71 (2014). (査読無)

〔学会発表〕(計 11件)

①<u>H. Karatani</u>, Y. Ihara, D. Okamoto, Biosensor for detecting toxic substances by luminous *Escherichia coli* carrying the genes responsible for light production, International Symposium on Advances in Sustainable Polymers (ASP-16): 2016年8月発表予定(京都工芸繊維大学,京 都市)

 伊原裕,岡本大希,<u>柄谷肇</u>,生物発光大 腸菌による呼吸阻害毒性物質のセンシング, 日本化学会第96春季年会:2016年3月(同 志社大学 京田辺キャンパス、京田辺市)

③ Y. Ihara, D. Okamoto, <u>H. Karatani</u>, Visualization of toxic substance in environmental water by using Blue fluorescent Escherichia coli, THE INTERNATIONAL CHEMICAL CONGRESS OF PACIFIC BASIN SOCIETIES 2015: 2015 年 12 月 (Honolulu, Hawaii, USA)

④ <u>H. Karatani</u>, Y. Ihara, D. Okamoto, Bioluminescent sensing of toxic substance in environmental water by using luminous Escherichia coli, THE INTERNATIONAL CHEMICAL CONGRESS OF PACIFIC BASIN SOCIETIES 2015 : 2015 年 12 月 (Honolulu, Hawaii, USA)

⑤ 増田遥平,岡本大希,伊原裕,<u>柄谷肇</u>, 電気化学的手法に基づく形質転換生物発光 大腸菌発光挙動の解析,第60回ポーラログ ラフィーおよび電気分析化学討論会:2014年 11月(京都工芸繊維大学,京都市).

その他学会発表

⑥ 岡本大希,伊原裕,柄谷 肇,

活性酸素種感受性生物発光大腸菌による環 境有害物質のセンシング,日本化学会 5th CSJ:2015年10月(タワーホール船橋,東京) ⑦ 伊原裕,岡本大希,<u>柄谷肇</u>,形質転換青 色蛍光大腸菌による環境水中の毒性物質の 可視化,日本分析化学会第 64 年会 2015年9 月(九州大学伊都キャンパス,福岡市) ⑧ 柄谷 肇,岡本 大希,伊原 裕,ROS 感受性生物発光大腸菌による環境有害物質 の生物発光センシング,日本分析化学会第64 年会:2015年9月(九州大学伊都キャンパス, 福岡市)

 ⑨ 岡本大希,伊原裕,<u>柄谷 肇</u>, 過酸化水素感受性遺伝子組換え生物発光大 腸菌に基づく環境水中の急性毒性モニタリング法活性酸素種感受性生物発光大腸菌に よる環境有害物質のセンシング,日本化学会 4th CSJ:2014年10月(タワーホール船橋,東 京)

⑩ 柄谷 肇,活性酸素種−好気的呼吸間分子 リンクに着目した電気化学法に基づく細菌 生物発光の研究,第 60 回ポーラログラフィ ーおよび電気分析化学討論会: 2014 年 11 月 (京都工芸繊維大学,京都市).

 伊原裕、岡本大希、<u>柄谷肇</u>,環境水の毒性物質センシング用生物発光大腸菌の 構築、日本化学会第94年会:2014年3 月(名古屋大学,名古屋市,愛知県)

6. 研究組織

(1)研究代表者

柄谷 肇 (KARATANI, Hajime)

京都工芸繊維大学・分子化学系・教授 研究者番号:10169659

(2)連携研究者

- 尾山 廣 (OYAMA, Hiroshi)
- ・摂南大学・理工学部・教授 研究者番号: 50221700