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研究成果の概要（和文）：我々はマルチユーザ３D環境下での環境配慮型運転訓練の為に開発したiCO2という持続的で
環境配慮型交通管制ツールを実用化するために、マルチエージェントシステムを適用した。iCO2は信号機や周辺交通状
況のコンピュータ制御によるエコドライブ訓練の支援を行う。それ故、各アージェントはそれぞれ対峙関係にあり、最
適化された課題の達成に挑む。研究の目的は、この共有型シミュレーション空間で全ユーザに対する最適化された難易
度調整を行うことであり、１）制御可能体（相手）と制御不可能体（ユーザ）があり、２）各々の相互関係が非常にダ
イナミックである。我々はこれを分配型制限最適化問題（DCOP）として問題解決した。

研究成果の概要（英文）：We apply multi-agent systems to realize sustainable eco-friendly traffic 
management We developed iCO2, an online tool for training eco-friendly driving in a multi-user 3D 
environment. iCO2 supports eco-driving practice by instructing computer-controlled agents, such as 
traffic lights and other vehicles, to create traffic situations that make eco-driving more difficult. 
Hence the agents take the role of “opponents” that try to achieve the optimal challenge level for the 
skill level of each user. The research challenge is to find the optimal challenge level for all user 
drivers in a shared simulation space that (1) involves both controllable entities (“opponents”) and 
non-controllable entities (users) and (2) is highly dynamic, with dependencies between entities being 
created and destroyed in real time. We solve this problem by modeling the scenario as a distributed 
constraint optimization problem (DCOP).

研究分野： AI

キーワード： 環境配慮型運転トレーニング　最適化された難易度調整　分配型制限最適化問題（DCOP）
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１．研究開始当初の背景 
During the past decade, multi-agents systems 

(MAS) have been successfully applied to solve 

various types of sustainability issues. Examples 

include smart grid management, reduction of 

energy consumption in buildings, and traffic 

management. In traffic management, the goal is 

to minimize traffic congestion by creating 

optimal traffic control strategies. To solve 

traffic control problems, MAS techniques are 

used to synchronize adjacent traffic signals 

(conceptualized as agents), with the goal of 

letting vehicles cross as many intersections as 

possible without stopping. The difficulty is to 

determine which direction should be 

synchronized so as to maximize network 

throughput, and consequently minimize travel 

times and negative impacts of traffic on the 

environment.  

While we share the goal of reducing fuel 

consumption and CO2 emissions with those 

MAS-based traffic control applications, the 

controllable agents in iCO2, our multi-user 

three-dimensional (3D) eco-driving training 

space, serve a completely different purpose. 

Rather than facilitating traffic flow, 

controllable agents act as “opponents” to the 

user driver by creating eco-circumstances 

(“obstacles”), i.e. traffic situations that make 

eco-driving difficult for the user. We 

implemented two types of opponents: fixed 

position and moving opponents. A traffic signal 

is an opponent (agent) with a fixed position that 

can impact all user drivers approaching it. As an 

opponent, the traffic signal can turn “yellow” at 

a certain moment and put the user driver in an 

“eco-safety dilemma” state: (1) strong braking 

or acceleration will avoid crossing the red light, 

but is an eco-unfriendly driving style; (2) 

keeping the speed is an eco-friendly option but 

has the risk of running the red light. 

Computer-controlled vehicles, on the other 

hand, are moving opponents. Their behavior 

can impact the vehicles (both user-controlled 

and computer-controlled) following on the 

same lane. E.g. a braking operation will induce 

braking in the following vehicles, as collisions 

have to be avoided. The difficulty level of the 

eco-circumstance, or challenge, we want to 

create is determined by the user’s individual 

skill level. It is known that users get frustrated 

when the difficulty level of the interaction in the 

simulation space is too high and loose interest if 

it is too low. So the opponents (traffic signal, 

computer-controlled vehicles) should adapt the 

difficulty level to the user’s current skill level. 

This technique is called real-time, or dynamic, 

challenge balancing (RCB). Existing 

approaches for RCB are limited to the “one 

opponent vs. one user” case. Our training 

environment, on the other hand, is a “social” 

driving environment, where multiple users are 

expected to practice eco-driving in the same 

simulation space at the same time. Therefore, to 

create challenges for each individual user, 

multiple opponents are necessary.  

To summarize, the technical challenge of our 

eco-driving environment is to find a set of 

actions for the opponents that generate the 

optimal challenge level for each user in the 

scenario.  

A solution to this problem is complicated by 

several factors: (1) all entities (users and 

opponents) share the same driving space and 

thus their actions have direct and often 

unwanted influences on others. For instance, 

the attempt to create a high-difficulty 

eco-circumstance for one user driver may 

accidentally create a high level challenge for 

another user driver (following behind the first 



user), who should instead experience  a  

low-difficulty  eco- circumstance;  (2)  user  

drivers  are  non-controllable  entities  that 

might also create unwanted eco-circumstances 

for other users; (3) the solution has to be found 

in real-time. In  this  paper,  we  will  

represent  our  problem  as  a  distributed 

constraint  optimization  problem  (DCOP). 

In DCOP applications, each agent holds a 

variable and can change its value to achieve a 

globally optimal solution. To our knowledge, 

DCOP algorithms  have  not  yet  been  

applied  to  scenarios  that  are comparable 

to the heterogeneity of our multi-user 

multi-opponent real-time  eco-driving  

scenario.  Hence, the main contribution of this  

project  is  a  new  application  for  DCOP  

algorithms  and  the presentation  of  results  

from  a  series  of  simulation  runs  that 

involve human users, a kind of “participatory 

simulation”. 

 
２．研究の目的 
 
Multi-agent systems have already been 

successfully applied to a variety of traffic 

control problems and demonstrated the 

potential to lower travel times and 

environmental impact. Sharing this goal, we 

have developed iCO2, an online tool for 

training eco-friendly driving in a multi-user  

three-dimensional  environment.  iCO2 

supports eco-driving practice by instructing 

computer-controlled agents, such as traffic 

lights and other vehicles, to create traffic 

situations that make eco-driving more difficult. 

Hence the agents take  the  role  of  

“opponents”  that  try  to  achieve  the  

optimal challenge  level  for  the  skill  

level  of  each  user.  The  research 

challenge is to find the optimal challenge level 

for all user drivers in  a shared simulation 

space that (1) involves both controllable  

entities (“opponents”)  and  non-controllable 

entities  (users)  and  (2) is highly dynamic, 

with dependencies between entities being 

created and destroyed in real time. We try to 

solve this problem by modeling the scenario as 

a distributed constraint optimization problem 

(DCOP).  The main contribution  of  our 

paper  is  the application  of  a  DCOP  

algorithm  to  such  a  new  type  of 

application  scenario.  We evaluate our 

approach by  running scenarios both in terms 

of speed and optimality of the solutions 

proposed by the DCOP algorithm. 
 
３．研究の方法 
 

In distributed constraint optimization problems 

(DCOP), each agent is assigned to one or more 

variables and these have interdependencies. 

The goal is to find an optimal assignment for 

the variables to minimize or maximize a global 

cost function. 

A DCOP is formally defined by (following the 

notation of: 

A DCOP is represented by a constraint graph, 

where the nodes are the variables and a link 

between two nodes exists when there is a 

constraint over two variables. Agents whose 

variables share a constraint are called 

“neighbors”. Agents are only allowed to see 

their neighbors, and may exchange messages 

with them.  

In our application, each agent represents either 

an opponent or a user. In the case of an 

opponent, the variable associated with it 

indicates the action that the opponent will 

choose to execute. Since the users are 

non-controllable entities, the variable indicates 

the action that we predict the user to execute. 



The prediction is based on (1) the current 

environment state (car’s position, acceleration, 

speed, and distance to the light) and (2) the 

actions that the car ahead may perform (i.e. the 

value of the parent node). It is important to note 

that not all opponents involved in the DCOP 

may influence the prediction of a certain user’s 

action. To reflect this, we introduce the concept 

of “dominance”. An agent (opponent or user) is 

dominant over another agent (opponent or user) 

if the actions of the former directly influence 

the behavior of the latter. In our application:  

1. A traffic signal is dominant over an agent Ai, 

if Ai is in front of the traffic light and there is 

no other agent Aj in the environment between 

Ai and the traffic light.  

2. An opponent/user car is dominant over an 

agent Ai, if Ai is behind the opponent/user car, 

in the same lane, and there is no other agent Aj 

in the environment between Ai and the 

opponent/user car.  

 

An opponent is called non-controlling if it is 

not dominant over any other agent (at a 

particular moment). Non-controlling opponents 

are not part of the constraint graph, since they 

cannot influence any user. In our scenario, 

DCOPs always involve a traffic light. Hence, 

we obtain a tree-like structure, where the traffic 

light is the root, each branch represents a lane, 

and the leaf nodes are users (see Figure 2 

(right)). This means that if agent Ai is dominant 

over agent Aj, the node controlled by Ai is a 

parent node of the node controlled by Aj. 

Hereafter, we refer to the nodes using tree 

notation (parent node and child node). Once the 

structure is determined from the position of the 

traffic lights, opponent cars and users in the 3D 

environment, we can start with distributed 

constraint optimization.  

The domain of a variable in the DCOP depends 

on the type of the agent controlling that 

variable. If the variable corresponds to a traffic 

signal node, there are two available actions, 

“change color” and “not change color”: D = {C, 

NC}. If the variable corresponds to an 

opponent car node, the available actions are 

braking, keeping the speed and accelerating: D 

= {B, KS, A}. In the case of the user node, the 

domain is the output of the prediction function, 

which is also “braking”, “keeping speed”, or 

“accelerating”: D = {B, KS, A}. Even though 

the user is allowed to change lanes, this is not 

covered by the prediction function.  

The existence of constraints is solely based on 

the dominance relationship between agents. 

The cost of existing constraints depends on 

whether there is a conflict between the agent’s 

actions or not. A conflict occurs when (a) a 

parent node (dominant agent) executes an 

action that raises an inadequate challenge for 

the child node (in case it is a user node); (b) a 

child node executes an action that is 

conflicting with its parent node’s value. As an 

example of the latter type of conflict, consider 

an opponent car that is in front of a traffic light 

and decides to accelerate, while the light 

decides to change to red. If the car is very 

close to the light, it may be able to accelerate 

and cross in time; hence both actions can be 

executed independently. However, if the car is 

slightly further away, it may be forced to brake, 

even if it had chosen to accelerate (recall that 

opponents never cross a red light). This 

unwanted braking will affect the following cars 

and hence, this kind of conflict should be 

detected beforehand. 

Case 1: When the child node xj is an opponent 

car, we predict the action of the opponent car 

given the value of the parent xi, and the current 



state. Then we compare the predicted action 

with the desired action (dj, the value of xj). 

This comparison is based on the restrictiveness 

of the action, “brake” being the most restrictive 

action and “accelerate” being the least 

restrictive one. If the predicted action is more 

restrictive than the desired one, they are 

conflicting, and the constraint has infinite cost. 

Otherwise, there is no cost (f (xi, xj) = 0).  

Case 2: When the child node xj is a user, we 

similarly predict the action that the user car will 

execute, given the value of the parent xi and the 

current state. Furthermore, we predict the 

challenge that this action represents by using 

the challenge function. If the predicted action is 

different from the value of the child node xj, 

there is infinite cost. This is necessary because 

the DCOP algorithm investigates all the 

possible values for each node. Since the user 

node should always represent a predicted action, 

values that are inconsistent with it should yield 

infinite cost. If the predicted action is the same 

as the value of the child node xj, the cost is the 

difference between the predicted challenge and 

the ideal challenge for that user. The ideal 

challenge for a user is the difference between 

the maximum challenge and the current average 

challenge for the user.  
 
４．研究成果 
 

The results of our pilot study are summarized in 

Table 1. The traffic signal is included in the 

size of the DCOP (e.g. a problem of size 7 

should have one signal and 6 cars). As expected, 

when the number of entities in the scenario 

grows, the number of DCOPs to be solved also 

grows, as well as the size of the DCOP. Even 

though 33 computer-controlled cars and 3 

human users shared the same circuit in Session 

III, the DCOP maximum size did not exceed 11 

variables (traffic light included).  

The study showed that regardless of the growth 

in size, the average time taken to solve the 

DCOPs remained approximately constant (1 

second). Even if 1 second appears slow for 

graphs of such small size, it is important to note 

that this value does not represent solely the 

algorithm runtime. Since all of the graphics and 

logic complexity of the application runs in a 

single thread, the exchange of messages 

between agents has a natural delay, even if it 

runs locally. Hence, the actual time consumed 

by the DCOP algorithm might be much smaller 

than 1 second.  

As a metric for the level of “dynamics” (rate of 

change of the position of user cars) of the 

traffic situation, we counted the number of 

reconstructions of the DCOP graph due to lane 

changing. First, the graph is always 

reconstructed when a car crosses the traffic 

signal (i.e. leaves the graph). It would also be 

reconstructed if a vehicle enters the relevant 

area. However, such situation was not foreseen 

in our experiment. Second, the lane changing 

action induces a reorganization of the existing 

variables and indicates how “dynamic” did the 

user cars behave, when inside the DCOP area. 

However, while users were allowed to freely 

move within the scenario, few graph 

reconstructions were detected in each session 

(see Table 1).  

Although challenge balancing was not the 

focus of this study, we also looked at whether 

the DCOP calculations have any effect on the 

value of the challenge function over time. Fig. 

3 shows the example for one user in Session II. 

For this experiment, the challenge function 

was weighted so that it could assume values 

within the range [0-4]. The peak at 2min50s 



indicates a vehicle collision (challenge value 

raises because of the collision itself, and the 

sudden deceleration generated by it). The 

figure shows that, overall, the challenge for 

this user remained low throughout the whole 

session. This could indicate many things: 

opponents’ behavior is not aggressive enough, 

user was not affected by challenge balancing 

(as this would have yielded a generally higher 

challenge, in average) or that the challenge 

function needs to be adjusted. Further 

investigation is necessary to establish a direct 

relation between the participation in the 

DCOPs and the change in the value of the 

challenge function. 
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