機関番号：17104

研究種目：挑戦的萌芽研究
研究期間：2013～2015
課題番号：25540164
研究課題名（和文）プロジェクト型学習における自動相互評価方式

研究課題名（英文）Aut omatic mut ual eval uation met hod for project based I earning

研究代表者
井上 創造（I noue，Sozo）
九州工業大学•大学院工学研究院•准教授

研究者番号：9 0346825
交付決定額（研究期間全体）：（直接経費）2，900，000円

研究成果の概要（和文）：本研究では，プロジェクト型学習において，学習者及び指噵者の利用を負担を下げながら学習者の評価を行う手法を提案し，定式化・システム開発を行い，実際に大学における講義内で実験を行うことで評価し今後の課題としては，定式化において既存の項目反応理論のようなテスト理論との整合性を検証したり，更なるユーザ インタフェースにより問題を改善していくシステムが望まれる。

研究成果の概要（英文）：In thi s work，we proposed a met hod for assessi ng I ear ner s without increasi ng the workl oad of I ear ners and teacher s，mat hemat i cally for mal i zed，devel oped a web－based syst em and eval uat ed in real cl asses in the uni ver sity．
As fut ure work，validating the compatibility with the traditional itemresponse theory in test theory， and the method for improving quizzes with additional user interfaces，are required．

研究分野：情報工学

キーワード：プロジェクト型学習支援システム Webシステムeラーニング クラウドソーシング Moocs

1．研究開始当初の背景

近年，目標に向かってプロジェクトを進め ながら自発的な学習を狙うプロジェクト型学習が注目されているが，その公平かつ客観的な評価の仕方には決定的な解はまだ無 い。市民権を得ている方法として，学習者 どうしで評価しあう相互評価があるが，こ れには以下のような問題がある。
－一人一人の評価を集計する指導者の負担が大きい，原理的には，全員が全員 を評価すれば，学習者数を n とすると n^{2} 個の相互評価を処理しなければなら なくなる．
－その結果として，相互評価を頻繁に行 うことができない，過程を評価するた めに，相互評価を高頻度に行うことが望ましいが，現実には1， 2 回程度の相互評価ですますことになる。
－多様な指標て評価しにくい。例えば「プ レゼンテーション能力」，「プロジェク トの工夫」，「学習内容」のように，公平性と客観性を確保するために多様な評価指標を設けることか望ましいが，こ れも学習者と指導者の負担か増すこと につながり，困難を伴う。

2．研究の目的

上記問題に対して，本研究では，学習者 および指導者の利用の負担を極力下げ，か つ自動的に個人およびチームの評価を行う手法を研究する，それは，利用者には他人 の活動に対して評価を簡単かつ頻繁に入力 できるようにしながら，収集した評価を意味を考慮して機械学習することにより個人 とチームを自動評価する方式である。他の手法と同等以上の，精度と評価尺度の多様性を，利用者の負担を増やすこと無く実現 することを目標とする。

3．研究の方法

作問•自動採点評価Webシステム 3 章で はアルゴリズムを紹介し，シミュレーショ ンを行った。それを実運用するために，実際にユーザが作問し，問題を解答するため のWebシステムが必要である ．実際に作問 し，問題を解答してもらうための作問•自動採点評価 Web システム＂，Atquiz＂を作成した。
問題作成時の画面を図 1，図2に，回答時 の画面を図3に示す。

図 1：Atquizの作問画面

図 2：Atquiz の作問画面

評点計算方法 この節ではユーザが生成す るの各概念を定式化し，自動評点システム をモデル化する・最後に評価計算をするた め反復アルゴリズムを記述する．
以下では，U をユーザ集合，Q を問題集合，q を問題，u を回答者とする。また，問

図 3：解答終了時の画面

題 q に回答者 u が回答して自動的に採点さ れたスコアを $\operatorname{score}(q, u)$ と表す．スコアは問題や試験ごとに範囲がそれぞれあるが 0 から 1 の範囲にした．
－問題の難易度
難易度の高い問題は多くの回答者のス コアが低く，簡単な問題は点数が高い と考えられるため，問題の難しさはそ の問題のスコアの平均に反比例するも のとする．

$$
\operatorname{diff}(q):=-\frac{\sum_{u \in U} \operatorname{score}(q, u)}{|U|}
$$

ただし，後に乗算される際に難易度が最低の問題は評点を 0 にするため，こ の値から最小値 $\min _{q \in Q} \operatorname{diff}(q)$ を引い ても良い。
－問題の妥当性
妥当性はその問題の作問者の評点の平均とする。問題と試験の目標の依存関係のモデル化ができないため妥当性の定式化が少し難しい，従来の授業から推察すると，教師は良い問題を，アシ スタントはやや良い問題を，生徒はあ まり本格的でない問題を作成するはず である．つまり，評点の高い作問者ほ ど妥当性の高い問題を作成するものと

仮定する．問題 q の妥当性は q の作問者（author（ q ）とする）によって解かれ た問題の評点の平均と定義できる。問題 q の妥当性は q の作成者によって解 かれた問題の評価の平均であると定義 する。

$$
\operatorname{valid}(q):=\frac{\sum_{q^{\prime} \in Q} \operatorname{eval}\left(q^{\prime}, \text { author }(q)\right)}{|Q|}
$$

ただし，作問者 author (q) が解いた問題が少ない場合は，この値がたまたま良い値となることも考えられるため，t検定などにより母集団の区間推定を行 い，その信頼区間の最小値を用いても良い。
また，後に乗算される際に妥当性が低 すぎる問題は，むしろ不正解の方が評点が高いことが望ましい場合には，妥当性が低すぎる問題について負の値と するために，例えば平均値より 2σ 小さ い値が 0 となるように値を調整しても良い。
－問題へのユーザの解答に対する評点
問題の難しさと妥当性を考慮した上で回答者に与えられる評価点で，問題 q に対するユーザ u の回答に対する評点は

$$
\begin{aligned}
\operatorname{eval}(q, u): & =\operatorname{score}(q, u) \cdot \operatorname{diff}(q) \\
& \cdot \operatorname{valid}(q)
\end{aligned}
$$

と定義する．

ただし，この値は例えば平均値 50 ，標準偏差 20 となるように正規化されても良い。

アルゴリズム 難易度，妥当性，評点は前節で定義した。しかしながら，それらの定義は再帰的である。したがって私たちは収束するまで計算を繰り返すヒューリスティツ クな手法を用いる。

1．各 $q \in Q$ について，難易度 $\operatorname{diff}(q)$ を計算する。

2．各ペア $(q, u) \in Q \times U$ について，評点 の初期値を

$$
\operatorname{eval}(q, u) \leftarrow \operatorname{score}(q, u)
$$

とする．
3．各 $q \in Q$ について，妥当性 $\operatorname{valid}(q)$ を計算する．ただし，教師が作った問題 のように明らかに妥当な問題について は，妥当性を最高値 $\max _{q \in Q} \operatorname{valid}(q)$ と する。

4．各ペア $(q, u) \in Q \times U$ について，評点を

$$
\operatorname{eval}(q, u) \leftarrow \operatorname{score}(q, u) \cdot \operatorname{valid}(q)
$$

により更新する ．

5．収束するまで（3）－（4）を繰り返す。
6．各ペア $(q, u) \in Q \times U$ について，評点を

$$
\operatorname{eval}(q, u) \leftarrow \operatorname{eval}(q, u) \cdot \operatorname{diff}(q)
$$

により更新する．
ここで評価は初期値としてスコアを与え ており，ステップ（3）－（4）において収束する まで $\operatorname{diff}(q)$ 以外の因子を繰り返し計算して いる．難易度 $\operatorname{diff}(q)$ は繰り返し乗算される のを防ぐために，最後のステップ（6）におい てのみ乗算される。
上記のアルゴリズムについて，各問題の妥当性にばらつきがある場合と難易度にば らつきがある時で計算機シミュレーション を行い，アルゴリズムが収束することと，難易度と妥当性を適切に導くことを確認した。

4．研究成果

今回の評点方法において，難しさ，妥当性がそれぞれ評点に影響しているかどうか を評価するため，大学内での講義での評価実験を行うことで評価を行った．グラフ（図 4）は解かれた問題の評点と妥当性を示して いる。

図 4：評点と妥当性のグラフ

図4のx軸は解かれた問題の評点， y 軸は解かれた問題の妥当性である。正解した問題は妥当性が上がるに従い，評点が上がっ ていることがわかる．また正解していない問題は妥当性が高くなれは評点も下がって いることが見受けられる．

まとめ このように，本研究では定式化・シ ステム開発•実験により，学習者及び指導者の利用を負担を下げながら学習者の評価 を行う手法を提案•評価した。今後の課題 としては，定式化において既存の項目反応理論のようなテスト理論との整合性を検証 したり，更なるユーザインタフェースによ り問題を改善していくシステムが望まれる。

5．主な発表論文等

【雑誌論文】（9 件）
1．（査読有）谷口 敦，井上 創造，＂Exper－ iment for Automatic Assessment of User－generated Tests＂，IEEE Interna－ tional Conference on MOOCs，Inno－ vation and Technology in Education （MITE），pp．152－155，2015／10／01，

Amiritsar，India．
2．（査読有）谷口 敦，井上 創造，＂A Method for Automatic Assessment of User－generated Tests and Its Evalu－ ation＂，ACM Int＇l Conf．Pervasive and Ubiquitous Computing（Ubicomp） Poster，pp．225－228，2015／09／09，Os－ aka．

3．（査読有）谷口敦，井上創造，＂ユーザに作問を任せるテストの自動評点手法と その評価＂，マルチメディア，分散，協調 とモバイル（DICOMO2015）シンポジ ウム，pp．602－608，2015／07／08，Iwate．

4．（査読有）戶田 隆道，井上 創造，田中 翔太，上田 修功，＂Training Human Activ－ ity Recognition for Labels with Inac－ curate Time Stamps＂，Ubicomp Work－ shop for Human Activity Sensing Cor－ pus and its Application（HASCA），pp． 863－872，2014／09／13，Seattle，USA．

5．（査読有）Ghada Farouk Naiem，井上創造，＂A Method for Assess－ ing User－generated Tests for Online Courses Exploiting Crowdsourcing Concept＂，International Workshop on Web Intelligence and Smart Sensing （IWWISS），pp．1－6，2014／09／01，Saint Etienne，France．

6．（査読有）戶田 隆道，田中 翔太，林田 興祐，井上創造，上田 修功，＂ラベルの時刻ずれに対応した携帯センサ行動認識手法＂，マルチメディア，分散，協調とモ バイル（DICOMO2014）シンポジウム， pp．394－400，2014／07／09，Niigata．

7．（査読有）右田 尚人，服部 祐一，田中 翔太，井上創造，＂動画像と加速度 データを用いた行動類似度評価システ ム MimicMotion の開発と評価（Devel－ opment and Evaluation of Behavioral

Similarity Evaluation System Mimic－ Motion Using Acceleration Data and Video）＂，マルチメディア，分散，協調 とモバイル（DICOMO2013）シンポジ ウム，pp．1207－1216，2013／07／10， Tokachi，Hokkaido．

【学会発表】（9 件）

1．松木 萌，谷口 敦，井上 創造，＂文書の ベクトル表現を用いて学習者が作成し た問題を分類する試み＂，SOFT 九州支部学術講演会，pp．25－26，2015／12／12， Kumamoto．

2．松木 萌，谷口 敦，井上 創造，＂問題作成システムにおける問題自動分類に向 けて（Towards Automatic Classifica－ tion of Quizzes for User－generated Test Systems）＂，SOFT 九州支部夏季ワー クショップ，poster，2015／08／27，Ku－ mamoto．

3．井上 創造，＂（Invited）Pervasive Sens－ ing for Nursing and Smart En－ ergy Applications＂，International Con－ ference on Informatics，Electronics \＆Vision（ICIEV），2015／06／16，Ki－ takyushu，Japan．

4．井上創造，＂センサビッグデータを用い た看護行動／節電行動理解＂，パーティ クルフィルタ研究会 発足十周年記念イ ベント，2015／04／24，Kitakyushu．

5．谷口 敦，Ghada Farouk Naiem，井上創造，＂ユーザに作問を任せるテ ストの自動評点に向けて＂，日本知能情報ファジィ学会九州支部学術講演会予稿集，pp．81－82，2015／03／09，北九州。

6．潘 新程，峯崎智裕，磯田 達也，田中 翔太，内野百里，井上創造，＂生活行動と消費電力の関係を調べるためのタブレ ット端末センシングおよび行動入力シ

ステム＂，日本知能情報ファジィ学会九州支部学術講演会予稿集，pp．99－100， 2015／03／09，北九州．

7．戶田 隆道，井上 創造，上田 修功，＂ラ ベルの時刻ずれに対応した携帯センサ行動認識におけるクラスタリングによ る特徴量境界の明確化（Feature Clus－ tering for Mobile Activity Recognition with Time－lagged Labels）＂，情報処理学会 第 160 回ヒューマンコンピュー タインタラクション・第44回ユビキタ スコンピューティング合同研究発表会， pp．1－7，2014／10／14，沖縄．

8．井上 創造，＂（Invited）Mobile Activity Recognition and Large－scale Health－ care Sensing＂，International Sympo－ sium on Advanced Intelligent Systems， 2013／11／13，Daejeon，Korea．

9．井上創造，中島 直樹，＂サイバーフィジ カルヘルスケア＂，電子情報通信学会ソ サイエティ大会「CPSを支える／CPS が変えるインターネットアーキテクチ ヤ」，2013／09／19，Fukuoka．

【図書】（0件）

【産業財産権】（0件）

【その他】

ホームページ：http：／／atquiz．sozolab．jp／

6．研究組織

（1）研究代表者
井上創造（INOUE，Sozo）
九州工業大学•大学院工学研究院•准教授研究者番号：90346825
（2）研究分担者
中尾 基（NAKAO，Motoi）
九州工業大学•大学院工学研究院•教授
研究者番号：70336816

