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In this research, we realized dynamic diversifying methods in the Java platform
by the novel mechanism instrumentation introduced in Java 5.
Our research consists of three categories; (A) hiding the program at the runtime, (B) reducing the
overhead from the protection methods, and (C) evaluating the tolerance against dynamic analysis.
The outcomes of our research are: (A) the self-modification technique by methods folding, (B) lightweight
and dynamic obfuscation method with invokedynamic instruction, and (C) the evaluation method for
robustness of the protection methods by (C-1) Kolmogorov complexity, (C-2) stealthiness by perplexity,
(C-3) identifying applied obfuscation methods towards de-obfuscation, and (C-4) birthmarking methods for
more large scale software search.
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void my(double v1, double v2){
int answer = vl + v2;
return answer;

void my(int vi, int v2){
int answer = vl * v2;
return answer;

}

Folding methods
into one method

void my(int vl, int v2){
int answer = vl * v2;
return answer;
}
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