(®)
2013 2015

Java

Dynamic Diversifying Methods for the Java Platform

TAMADA, Haruaki

3,300,000
Java
») ®) ©
» (B) invokedynamic
© (€D (C-2)
(€-3) c-4)

In this research, we realized dynamic diversifying methods in the Java platform
by the novel mechanism instrumentation introduced in Java 5.
Our research consists of three categories; (A) hiding the program at the runtime, (B) reducing the
overhead from the protection methods, and (C) evaluating the tolerance against dynamic analysis.
The outcomes of our research are: (A) the self-modification technique by methods folding, (B) lightweight
and dynamic obfuscation method with invokedynamic instruction, and (C) the evaluation method for
robustness of the protection methods by (C-1) Kolmogorov complexity, (C-2) stealthiness by perplexity,
(C-3) identifying applied obfuscation methods towards de-obfuscation, and (C-4) birthmarking methods for
more large scale software search.

Java invokedynamic

Java

Java
Java
Java
Java 5
Java
Java Java
Java
Scala Groovy
Jython
Java
Java
Java
Java
Java

(dynamic diversify)

Java
Java

@)
(b)

(@)

(b)

Java

(A)

(B)

©
(A)

Java (2)
2
3)

(B)

invokedynamic

© A (B)

QY

my, My

m, m,
my (changeM2t oML)
my m m

changeMLt oMR

m, My
(B)
[
1 6,8, 10, 11]
[7 2

2 (i) nethodl

void my(double v1, double v2){
int answer = vl + v2;
return answer;

void my(int vi, int v2){
int answer = vl * v2;
return answer;

}

Folding methods
into one method

void my(int vl, int v2){
int answer = vl * v2;
return answer;
}
voi d changeMLt oM2() {
/1 change routine m, to m,.

voi d changeMt oML() {
/1 change routine m, to m,.

Program p (i)

Method m

call nmet hodl —

c
Obfuscate by
‘ the proposed method
Program p (ii)
Method m
s
call met hodD— hook
|
‘ Runtime behavior
Program p (iii)
Method m

. met hodD
call met hodD—< hook

Actually called| et hodl

M
Bl

2.

2 (ii) 2(i)
met hodD nmet hod1
met hodD
met hodD
2 (iii)
met hodD
nmet hod1
2
JavaSE 7

invokedynamic
invokedynamic

©
[2 [9
[3
[2,4
NP
Conventional Software Softwareto be checked
method r
. X
Extract Extract
bi rt:]ma“ks‘ birﬂr1marks

‘. Compare birthmarks
Bi”“m’“.. “ ’.

The proposed Create hashes from Birthmarks

method

f1(a) abcdef
f,(a) ghijkl

f1(x) ACEQ K
fo(x) BDFHIL

f1(b) mmopar
f2(b) stuvwx

Compare hahes

. Kazumasa Fukuda and Haruaki
Tamada, “To Prevent
Reverse-Enginnering Tools by Shuffling
the Stack Status with Hook
Mechanism,” International Journal of
Software Innovation (IJSI), Volume 3,

Issue 3, pp.14-25, 2015

> , Vol. 30,
No. 3, pp. 18-24, September 2013

ER] 78

) , 10-12
March 2016

ER]

78 , 10-12 March 2016

ER]

SE , Vol.2015-SE-190, No.2, pp.1-6, 15,
16 December 2015 JR

ER]

, Vol. 115, No. 153, SS2015-21, pp.
63-68, 22-24 July 2015

7 2015

SCIS2015 3B4-4 20-23 January

2015

10.

11.

12

13.

” 2015

SCIS2015 3B4-3

20-23 January 2015

” 2015

SCIS2015 3B4-2 20-23 January 2015

XXI
FOSE2014 (FOSE2014),
pp-81-86, 11-13 December 2014
“Java

7 2014

(SCIS2014), 2D2-2, 21-24 January 2014

¢ 2014
(SCIS2014),
2D2-3, 21-24 January 2014
“Java 7
API invokedynamic

ER]

2013 (CSS 2013),
pp-1050-1057 21-23 October

2013

No.3D4-2

.Kazumasa Fukuda, Haruaki Tamada, A

Dynamic Birthmark from Analyzing Operand
Stack Runtime Behavior to Detect Copied
Software,”” In Proc. 13th ACIS International
Conference on Software Engineering,
Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD 2013),
pp-505-510, 1-3 July 2013, Sheraton Princess
Kaiulani (Honolulu, Hawaii, U.S.A.).

Tetsuya Ohdo, Haruaki Tamada, Yuichiro
Kanzaki, Akito Monden, '‘An Instruction
Folding Method to Prevent Reverse
Engineering in Java Platform,” In Proc. 13th
ACIS International Conference on Software
Engineering, Artificial Intelligence,
Networking and Parallel/Distributed
Computing (SNPD 2013), pp.517-522, 1-3
July 2013, Sheraton Princess Kaiulani
(Honolulu, Hawaii, U.S.A.).

1.
https://github. comtanmada/stig
mat a/

@
TAMADA, Haruaki

