科学研究費助成事業

研究成果報告書

平成 2 7 年 6 月 5 日現在

機関番号: 53801
研究種目: 若手研究(B)
研究期間: 2013~2014
課題番号: 2 5 8 7 0 2 2 4
研究課題名(和文)液晶分子間相互作用と外場を利用した3次元高分子ナノ階層構造体の設計と応用
研究課題名(英文)Design and application of three dimenasional hierarchical nano structure of polymer by interaction between liquid crystals and external fields
研究代表者
小村 元憲(Komura, Motonori)
沼津工業高等専門学校・その他部局等・准教授
研究者番号:90401512
交付決定額(研究期間全体):(直接経費) 3,400,000円

研究成果の概要(和文):液晶性ブロックコポリマーが形成するミクロ相分離構造に、低分子ブレンドや光照射を施す ことにより、通常発現する垂直シリンダー構造を、3次元的なミクロ相分離構造へ変換することを目的として研究をお こなった。結果として、円偏光や直線偏光、無偏光照射により、シリンダー構造が球状のミクロ相分離構造の変化する ことがわかり、照射を止めると等温的に元の構造に戻る可逆的秩序-秩序転移であることを発見した。

研究成果の概要(英文): Microphase separation of block copolymer (BC) has attracted much attention in recent years because its regular nanostructures have potential to provide promising template processes in a 10-1 nm scale. Generally, the phases of microphase separation, such as lamellar, cylinder or sphere, are uniquely determined by chemical structure of BC and volume fraction of each block. The liquid crystalline block copolymer forms perpendicularly oriented cylinder microphase separated structure in its film. We aim to fabricate three dimensional microphase separated structure by blend of low molecules with the block copolymer, or irradiation of linearly polarized light, circularly polarized light and non polarized light. We found that the light irradiation induces order-order phase transition from perpendicular cylinder to <110> oriented body centered cubic (BCC) type sphere microphase separated structure separated structures. The transition was reversible because the BCC structure was changed back to cylinder structure.

研究分野:高分子科学

キーワード: ブロックコポリマー 液晶 ミクロ相分離膜 外場印加 ブレンド法 3次元構造

1. 研究開始当初の背景

互いに交じり合わないポリマーからなる ブロックコポリマー(BC)は分子スケール(10⁰ -10¹nm オーダー)の周期構造体(ナノ相分離 構造)を自己組織的に形成する。各ポリマー (ブロック)の組成比を制御すると、基本的に 球状、シリンダー状、ラメラ状の構造に変化 する。また、3種のポリマーがつながったト リブロックコポリマーのせまい組成比範囲 において、2重ラセンがシリンダーの周りを まくことが知られている。近年、ジブロック コポリマーの PS-*b*-PLLA において、準安定 な状態ではあるが PLLA ラセン型ナノ相分 離構造が報告されている(R. M. Ho, *JACS*, 2009)。

申請者らグループは開発した液晶(LC)性 BC (PEO-b-PMA(LC))(図 1)が、熱処理の みで垂直に膜を貫通した PEO シリンダー型 のナノ相分離膜を形成することを報告した (汎用の BC では基板の影響により平行シリ ンダーが形成される(図 2)。Macromolecules, 2002)。液晶の長距離秩序性の付与により、 ナノ相分離構造の配列性・配向性が極めて高 い。また、親水性の PEO シリンダーへ金属 イオンや親水性分子が選択的に導入され、金 属・半導体・セラミクスなどの他物質へ、ナ ノ構造転写が可能であることを示している (BC テンプレート法)。

図1:側鎖液晶型ブロック共重合体構造式

図 2. ナノシリンダー相分離膜の表面 AFM 位相像(a)、断面 AFM 形状像(c)。(b)ナノシ リンダー相分離構造方位。(d)テラス構造を 示す高さプロファイル。

申請者は、液晶の膜表面からのホメオトロ ピック配向(垂直配向)を駆動力に、垂直シリ ンダー構造も膜表面から形成することを明

らかにした。BC 膜表面をシリコンオイルで 封止すると垂直シリンダー構造の形成が抑 えられる。更に、ラビングしたポリイミド(PI) 基板とシリコンオイルで BC 膜を挟むことに より、ラビング方向に1軸に配向した平行シ リンダー構造を再現良く得られることを見 出した。また、温度制御型 AFM により、本 ナノ相分離構造が液晶の核発生と生長に伴 い形成されていることを明らかにした。低分 子液晶ブレンド法により、単結晶領域(シリン ダーの六方配列方位の揃った領域)を1um²か ら 100µm²まで広げ、更にシリンダーアスペ クト比は 10³に達する。これは、(i)ブレンド により核発生密度が減少し、(ii)更に、液晶温 度での長時間(24時間)熱処理により、低分子 液晶の流動性から欠陥が排除される、という 効果による。このナノ相分離の世界最高の秩 序性は液晶の特徴を効果的に発揮した結果 である。

2. 研究の目的

図 4. (a)液晶 BC、(b)低分子液晶 (c)垂直シリンダー型ナノ相分離膜

研究目的の概略図を図 3 に示す。液晶性 BC のナノ相分離構造は、液晶性を制御する ことにより制御できると考えられる。シリン ダー型ナノ相分離から3次元的なナノ相分離 構造へ展開することを目的とした。3 次元的 なナノ相分離構造は、BC テンプレート法に より金属や半導体へ構造転写することで、可 視光応答メタマテリアルやバルクへテロ接 合型太陽電池への応用が期待される。

3. 研究の方法

主に2つの方法によって3次元ナノ相分離 体の作製をおこなった。(1)液晶性 BC に低分 子をブレンドすることにより、分子間相互作 用を利用した構造制御を行った。(2)また、 アゾベンゼンの吸収波長の紫外線や可視光 を照射することにより、光異性化反応を利用 したナノ相分離構造制御をおこなった。

4. 研究成果

低分子液晶である 80CB と本液晶性 BC をブ レンドしたところ、斜入射小角 X 線散乱測定 において、液晶層由来とみられるななめ成分 のシグナルが観察された。透過型電子顕微鏡 法による膜断面測定からは、通常のシリンダ 一構造とは異なる画像がえられた。しかし、 その構造がラセン構造であるという明確な 情報は得られなかった。示差走査熱量計測定 から 80CB と液晶性 BC をブレンドすると液相 側鎖と 80CB のモル比 1:1 でブレンドした場 合に最も高い等方転移温度が現れた。つまり 液晶分子同士が相互作用していることがわ かった。

以上のことを踏まえ、液晶性 BC と相互作 用する 80CB に不斉部位を導入した 8*0CB を合 成した。8*0CB と液晶性 BC のブレンド系では 8*0CB のブレンド比 20%程度まで相溶するこ とがわかった。それ以上のブレンド比では降 温過程 70℃程度でマクロ相分離がおこった。 また、80CB ブレンド系に見られたような当方 転移温度の上昇は観察されず、液晶間の相互 作用は弱いと考えられる。ミクロ相分離構造 に関しては、大きな変化は見られなかった。

次に、偏光 UV や円偏光ブルーレーザーや 無偏光の光照射をおこなった。円偏光照射を おこなったところ、左右円偏光に対し、円二 色性スペクトルにおいて、上下対称のコット ン効果が観察された。これはアゾベンゼンが ねじれ構造を有していることを示している。 TEM 断面測定によるミクロ相分離構造評価で はシリンダー構造とは異なる BCC スフィア方 のミクロ相分離のような構造が得られた。

次に無偏光照射を施した際の構造変化の 結果を示す。PEO₁₁₄-b-PMA(Az)₆₁のクロロホ ルム溶液(1wt%)を調製し、石英基板、PET 基 板にスピンコートしてサンプル薄膜を作製 し,ホットステージ上で140℃から100℃まで 熱処理を行った。熱処理後のサンプルをホッ トステージ上で100℃に保持し、紫外光(波 長:360 nm,照射強度:2.5mW/cm²)を5分間照 射した。光照射による液晶構造の変化を調べ るため、吸収スペクトル測定および偏光顕微 鏡観察を行った。またミクロ相分離構造を確 認するため透過型電子顕微鏡(TEM)観察およ び斜入射小角 X 線散乱(GISAXS)測定を行っ た。

図 6. TEM の膜断面画像と膜 top-view 画 像。(a), (b)はアニール後の膜、(c), (d)は光 照射後の膜。(e)はミクロ相分離構造転移の 模式図。

吸収スペクトル測定の結果,側鎖アゾベン ゼンの長軸方向に由来する吸収(350nm 付近) の強度が光照射によって大きく増加したこ とが確認された(図 5)。これは光照射によって アゾベンゼンの垂直配向が乱され,アニール 前の無秩序な状態に近づいたことを示して いる。さらに偏光顕微鏡観察の結果,光照射 前はスメクチック相由来のテクスチャーが 見られたのに対し,光照射後では暗視野とな り光学的異方性は確認できなかった。これら の結果から光照射によってメソゲンの配向 が乱され,液晶相がスメクチック相から等方 状態へと変化したことが示された。

つづいて, ミクロ相分離構造の変化を確認 するため TEM により膜断面像および膜透過 像の観察を行った(図 6)。観察の結果,光照射 前は PEO ドメインがヘキサゴナルシリンダ ー構造をとっていたのに対し、光照射後は BCC スフィア構造へと変化していたことが わかった。この BCC スフィア構造は、今回 使用したポリマーが 120℃以上の液晶等方状 態でとる構造と対応することから,光照射に よって液晶配向を乱すことで等温的にスフ ィア構造が発現したものと考えられる。得ら れたスフィア構造は室温下では数ヶ月経過 しても構造変化は見られなかったが、100℃ で5分程度保持することによりシリンダー構 造への再転移が確認できた。このことからス フィア構造、すなわち液晶配向が阻害された 状態は準安定状態であり,一定温度で保持す ることにより液晶構造の形成に伴ってシリ ンダー構造へと再転移することがわかった。 以上の結果から、シリンダー/スフィア間にお いて光を利用して等温可逆的に秩序-秩序転 移を制御できることが明らかとなった。

このように、光照射を施すことにより、3次 元的な BCC 構造を発現させることに成功した。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計10件)

 Nanae Yamashita, Satoru Watanabe, Keiji Nagai, <u>Motonori Komura</u>, Tomokazu Iyoda, Kouhei Aida, Yasuhiko Tada, and Hiroshi Yoshida, "Chemically Directed Self-Assembly of Perpendicularly Aligned Cylinders by Liquid Crystalline Block Copolymer", *J. Mater. Chem. C*, **3**, 2837-2847 (2015).

② Junko Aimi, <u>Motonori Komura</u>, Tomokazu Iyoda, Akinori Saeki, Shu Seki, Masayuki Takeuchi, and Takashi Nakanishi, "Synthesis and self-assembly of phthalocyanine-tethered block copolymers", *J. Mater. Chem. C*, **3**, 2484 – 2490 (2015).

(3) Takuya Kamimura, <u>Motonori Komura*</u>,

Hideaki Komiyama, Tomokazu Iyoda and Fumito Tani*, "Linear assembly of porphyrin– C_{60} complex confined in vertical nanocylinders of amphiphilic block copolymer films", *Chem. Comm.* **51**, 1685-1688 (2015).

(4) <u>Komura, Motonori*</u>; Yoshitake, Atsushi; Komiyama, Hideaki; Iyoda, Tomokazu, "Control of Air Interface-Induced Perpendicular Nanocylinder Orientation in Liquid Crystal Block Copolymer Films by a Surface-Covering Method", *Macromolecules*, **48**(3), 672-678 (2015).

(5) Toshihiko Yoshimura, Kentaro Shiraishi, Tatsuhiro Takeshima, <u>Motonori Komura</u> and Tomokazu Iyoda, "Nano-Level Surface Processing of Fine Particles by Cavitation to Improve the Photocatalytic Properties of Titanium Oxide", *Nanoscience & Nanotechnology-Asia*, 4, 69-78 (2014).

(6) Shoichi Kubo, Sho Kobayashi, Shingo Hadano, <u>Motonori Komura</u>, Tomokazu Iyoda, and Masaru Nakagawa, "Directed self-assembly of nematic liquid crystalline polymers on a rubbed polyimide alignment layer", *Jpn. J. Appl. Phys.* 53, 06JC04 (2014).

⑦ Hiroyuki Sato, Nanae Yamashita, Tomokazu Iyoda and <u>Motonori Komura*</u>, "Orientation Control of Microphase Separated Nanocylinders in Confined Volume Prepared by Inkjet Printing", *Trans. Mat. Res. Soc. Japan*, **39**(2), 165-168 (2014).

(8) Hideaki Komiyama, Ryohei Sakai, Shingo Hadano, Sadayuki Asaoka, Kaori Kamata, Tomokazu Iyoda, <u>Motonori Komura*</u>, Takeshi Yamada, Hirohisa Yoshida, "Enormously Wide Range Cylinder Phase of Liquid Crystalline PEO-*b*-PMA(Az) Block Copolymer", *Macromolecules*, **47**(5), 1777-1782 (2014).

(9) <u>Motonori Komura*</u>, Hideaki Komiyama, Keiji Nagai and Tomokazu Iyoda, "Direct Observation of Faceted Grain Growth of Hexagonal Cylinder Domains in a Side Chain Liquid Crystalline Block Copolymer Matrix", *Macromolecules*, **46**(22), 9013-9020 (2013).

(1) <u>Motonori Komura*</u>, Kaori Kamata, Tomokazu Iyoda and Keiji Nagai, "Hexagonally Arranged Nanopore Film Fabricated via Selective Etching by 172-nm Vacuum Ultraviolet Light Irradiation", *Fusion Science and Technology*, **60**, 257-264 (2013).

① <u>M. Komura</u> and T. Iyoda, "Anomalously Regular Nanophase Separation in Liquid Crystalline Block Copolymer Film and Its Templating Processes", *The 1st Univ. of Bordeaux — Tohoku Univ. Joint Symposium*, Sendai, Oct. 24 (2013) (**Invited**)

②□ ○小村 元憲 "液晶に支配されたブロ ックコポリマー膜とテンプレート機能 - AFM は どこまで使えるか? -"、高分子学会東北支部 会員増強講演会「高分子科学によるナノ加工技 術の最前線」、仙台、2 月 28 日(2013)(招待講 演)

③□ ○小村 元憲、彌田 智一、"液晶配向によるミクロ相分離膜の構造形成機構と制御"、
 第 63 回高分子討論会、長崎、9月 25日(2014)
 (口頭、依頼発表)

 ④□ ○小村 元憲、彌田 智一、"液晶に支 配されたミクロ相分離膜の構造形成メカニズムと 制御"、第 63 回高分子学会年次大会、名古屋、 5 月 28 日(2014) (ポスター) ⑤□ 佐藤浩行、○小村 元憲、彌田 智一、 "インクジェットプリンタにより作成した微小空間 内でのミクロ相分離配向制御"、第 63 回高分子 学会年次大会、名古屋、5 月 28 日(2014) (ポス ター)

(6)□ •<u>M. Komura</u> and T. Iyoda, "Liquid Crystal Dominates Anomalously Regular Microphase Separated Cylinder Structure", *The 13th Pacific Polymer Conference*, Kaohsiung, Taiwan, Nov. 21 (2013), (**Oral**).

 ⑦□ ○小村 元憲、彌田 智一、"液晶に支 配されたミクロ相分離膜の構造形成メカニズムと 制御"、第62回高分子討論会、金沢、9月13日
 (2013)(口頭)

〔図書〕(計 1件)
 ① 著書「高分子ナノテクノロジーハンドブック~最新ポリマーABC 技術を中心に~」
 (株)エヌ・ティー・エス(分担執筆)、小村元憲、
 第3編高分子ナノ加工、第1章高分子ナノ加工、第3節ナノテンプレート機能性、511-517
 (2014)

〔産業財産権〕○出願状況(計 1件)

名称:液晶性ブロック共重合体薄膜の製造方 法、及びパターン形成方法 発明者:彌田智一、小村元憲、佐藤浩行、増 田一之、村田和広 権利者:東京工業大学 種類:特許 番号:2014-254279 出願年月日: 国内外の別: 国内

○取得状況(計 0件)

〔その他〕 ホームページ等 なし

 研究組織
 研究代表者
 小村 元憲(KOMURA Motonori)
 沼津工業高等専門学校・電気電子工学科・ 准教授
 研究者番号:90401512

[〔]学会発表〕(計 7件)