[Grant-in-Aid for Specially Promoted Research]

Novel cancer treatment by using the synergy of alpha-emitting radiopharmaceuticals and synthetic vaccines

	Principal Investigator	Osaka University, Institute for Radiation Sciences, Specially Appointed Professor FUKASE Koichi Researcher Number : 80192722	
	Project Information	Project Number : 25H00006 Keywords : targeted radionuclide therapy tumor immunity	Project Period (FY) : 2025-2029 , adjuvant, cancer vaccine, anti-

Purpose and Background of the Research

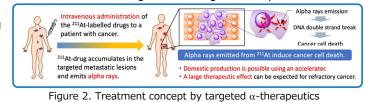
• Outline of the Research

Targeted alpha therapy (TAT) involves the uptake of short-lived radionuclides that emit α rays by specifically targeting tumor cells, allowing α -radiation within cells and effectively inhibiting cancer growth. This therapy induces an anti-tumor immune response, which is considered a key factor in its potent anti-tumor effects, although the mechanism remains unclear. This research aims to develop astatine-based TAT drugs and elucidate the mechanisms of immune activation. Additionally, the research will focus on developing anti-cancer vaccines that induce effective anti-tumor immunity while achieving precise immune modulation. Furthermore, the study will develop combination therapies that induce effective anti-tumor responses by combining astatine-based TAT drugs and anti-tumor vaccines.

Astatine medicine Na ²¹¹ At	① Development of cancer hyper-
PSMA- ²¹¹ At	accumulation/retention structures
"Integration of achievements"	② Mechanism of immune amplification by
adjuvant	α-ray-DAMPs-glycans
complex carbohydrates	③Immunity x nuclear-medicine therapy
Innate immune vaccines	with carbohydrate-derived vaccines

Figure 1. Development of a Cancer Treatment Approach by Integrating Targeted Alpha Therapy and Immunotherapy

• Potential of Targeted alpha therapy (TAT)


TAT is an advanced form of radiation therapy that delivers alpha-emitting radiopharmaceuticals to target metastatic cancer lesions throughout the body. By utilizing radiolabeled molecular-targeted drugs that bind specifically to cancer-associated molecules, this therapy enables precise uptake by cancer cells, allowing for internal radiation exposure that effectively eliminates tumors. One of the key advantages of α particles is their short range and high energy, which enables them to deliver strong cytotoxic effects to cancer cells while minimizing damage to surrounding healthy tissues. These properties make TAT a promising approach for treating refractory cancers.

A notable example of TAT is prostate-specific membrane antigen (PSMA)-targeted therapy using Actinium-225 (²²⁵Ac, half-life: 10 days), which has shown cases of complete remission. However, because ²²⁵Ac must be introduced via chelation, it can significantly affect the physicochemical properties of small-molecule and middle-molecule targeted drugs, posing a challenge for drug design and optimization.

• Our Approach to Astatine-211 (211At) in TAT

We are actively developing a novel TAT using Astatine-211 (²¹¹At, half-life: 7.2 hours), an α -emitting radionuclide that can be produced from bismuth using a cyclotron. ²¹¹At, as a halogen element, can be incorporated into a wide range of molecules and possesses moderate hydrophobicity, making it highly compatible with both small-molecule and middle-molecule targeted drugs. This property enables ²¹¹At-based radiopharmaceuticals to target a diverse range of cancers while overcoming molecular design limitations. This breakthrough could significantly

expand the therapeutic applications of α -emitting radiopharmaceuticals, enhancing precision and efficacy in cancer treatment.

Expected Research Achievements

- Development of ²¹¹At-Labeled Radiopharmaceuticals
- This study aims to establish ²¹¹At-based Targeted Alpha Therapy (TAT) by addressing key challenges:
- Enhancing targeted delivery to maximize selective uptake by cancer cells while minimizing sequestration by stromal cells
- Improving intracellular retention of ²¹¹At-labeled drugs to maximize cytotoxic effects By overcoming these challenges, we seek to advance innovative ²¹¹At-based cancer therapies.
- Elucidating the Mechanism of Immune Activation Induced by a-Radiation DNA double-strand breaks alone cannot fully explain the remarkable efficacy of TAT. Our preliminary studies indicate that ²¹¹At-irradiated cancer cells effectively induce anti-tumor immunity. This study aims to elucidate the molecular basis of immune activation triggered by ²¹¹At therapy and clarify its therapeutic mechanism.
- Development of Cancer Vaccines Utilizing Glycans and Glycolipids Glycans play a key role in innate and adaptive immunity, enabling self/non-self recognition. We have studied bacteria-derived immunostimulatory glycans and the immune functions of host-derived N-glycans, particularly core fucose. Our research has shown that FUT8 inhibitors suppress T-cell inflammatory responses. This study aims to develop innovative glycan-based therapies, including:
- Immune adjuvants
- Cancer vaccines using adjuvant-antigen complexes
- Utilization of FUT8 inhibitors for anti-tumor immune regulation By integrating these approaches with TAT, we aim to develop new therapeutic strategies for refractory cancers like pancreatic cancer.
- Clinical Translation at Osaka University

Investigator-initiated clinical trials are underway at Osaka University, led by our group, for the refractory thyroid cancer treatment [²¹¹At]NaAt and the refractory prostate cancer treatment PSMA-5.

Through this project, we aim to develop new ²¹¹At-based therapeutic candidates and establish a treatment strategy that effectively enhances anti-tumor immunity while preventing excessive immune responses. By combining cancer vaccines with TAT, this approach has the potential to suppress cancer recurrence and improve treatment outcomes.

Homepage Address, etc.	https://www.irs.osaka-u.ac.jp/project/alpha/ https://www.frc.sci.osaka-u.ac.jp/project/irp_crng https://www.frc.sci.osaka-u.ac.jp/project/ms_core
---------------------------	---