
【Grant-in-Aid for Scientific Research (S)】

Purpose and Background of the Research

Foundations and Applications of Program Verification Techniques

●Outline of the Research: Program verification is a technology for mathematically
ensuring that the software controlling a computer behaves as intended. Current
techniques have become increasingly complex due to accumulated optimizations for
efficiency. This complexity makes the overall structure hard to grasp, resulting in
issues such as mathematical unsoundness and limited extensibility. To address these
problems, this research establishes a mathematically concise theoretical foundation
based on logic, theory of computation, optimization theory, and learning theory,
and develops verification techniques combining correctness, extensibility, and
efficiency. The foundational techniques will then be extended in response to practical
demands. In particular, we will develop theory-based automated verification tools for
concurrent, parallel, and distributed systems, for cryptographic and
probabilistic systems essential to security and privacy, and for system programs
written in languages such as C and Rust.

●Research Background: Program verification is used to verify systems such as
aircraft control, CPU, OS drivers, and cloud networks. Though often unnoticed, it plays
a vital role in social infrastructure. As many verification problems are undecidable,
heuristics are essential for handling practical cases. Years of research have produced
numerous techniques, but their accumulation has made tools highly complex̶often
beyond expert understanding. In one case, a minor change broke termination, and
the issue went unnoticed for nearly a decade. This complexity hinders assurance of
correctness and extensibility, and makes verification time unpredictable.

Principal
Investigator

Tohoku University, Research Institute of Electrical Communication, Professor

UNNO Hiroshi Researcher Number︓80569575

Project
Information

Project Number︓25H00446 Project Period (FY)︓2025-2029
Keywords︓Program Verification, Formal Logic, Theory of Computation,
Optimization Theory, and Learning Theory

Figure 1. The Proposed New Theoretical Framework

CEGARCEGIS PDRPrimal Dual
Houdini

Logic &
Comp. theory

MBPCraig
Interpolation

Function
Synthesis SMT

Subprocedure

Superprocedure
Verification techniques New Theoretical

Framework

The new theoretical framework broadens and deepens the scope of the foundation,
enabling the analysis, organization, and integration of diverse verification techniques

important but remains a black box in existing frameworksimportant but remains a black box in existing frameworks

…

beyond the scope of existing frameworksbeyond the scope of existing frameworks

Learning &
Opt. theory

+

concurrent,
parallel,
and
distributed
systems

cryptog
raphic
and
probabil
istic
systems

system
programs

●Previous Research: To address the increasing complexity of program verification
tools, the principal investigator and collaborators have worked to reconstruct
verification techniques on concise mathematical foundations, drawing on logic and
computation theory. By formulating various verification problems as validity checking
problems for fixed-point logic formulas, we enabled cross-application of techniques
and built efficient tools. We also clarified the link between procedural program
verification and proof search in cyclic proof systems, organizing existing methods via
proof theory. The aforementioned nontermination bug was uncovered through this.

●Research Objectives: This research aims to establish a concise theoretical
foundation for program verification that supports deeper integration of diverse
techniques, including heuristics. By incorporating mathematical optimization and
learning theory, we will provide a theoretical foundation for heuristics beyond the
scope of formal logic and computation theory. We will also apply the resulting
framework to critical domains such as concurrent, parallel, and distributed systems,
cryptographic and probabilistic computation, and low-level software.

Expected Research Achievements
●Expanding and Deepening the Scope of the Foundational Framework: This

research aims to build a concise mathematical foundation for program verification,
combining correctness, extensibility, and efficiency. By broadening the scope of this
foundation, we will support advanced verification across key domains such as
concurrency, parallelism, distribution, cryptography, probabilistic computation, and
low-level programming. We will apply optimization theory̶especially Lagrangian
duality̶to analyze high- and low-level procedures in modern techniques, enhancing
their soundness and extensibility. In addition, learning theory will be used to study
convergence behavior in iterative methods, improving efficiency.

●Application to Real-World Software Verification: To demonstrate its effectiveness,
we will formally verify query and transaction processing̶key components of web and
cloud systems̶previously difficult to handle due to parallel and distributed execution,
cryptographic and probabilistic behavior for security, and low-level programming in C
and Rust. By extending verification tools through the new theoretical foundation, we
address these challenges.

Homepage
Address, etc.

https://www.riec.tohoku.ac.jp/~unno/
https://github.com/hiroshi-unno/coar

RCamlRCaml MuStratMuStrat

MuCycMuCyc

OCaml

𝜇CLPFunctional language
- Algebraic effects
- Prob. choices &
observation MuValMuVal

ThrustThrustRust

C C2LTSC2LTS
システムプログラミング⾔語
＋低レベルメモリ操作

System programming languages
- Low-level memory operations

Program＋Sepc.
{ x >= 0 }
while x >= 0 do

y := nondet∃ ();
x := x – y

{ ⊥ }

VC
generation

VC
generation

Fixed-point
logic 𝜇CLP

∀𝑥. 𝑥 0 ⇒ 𝑁 𝑥
where
𝑁 𝑥 ൌఔ 𝑥 0 ∧
∃𝑦.𝑁 𝑥 െ 𝑦

VC
checking

VC
checking

Verified
or

Falsified
or

Unknown

This project
extends CoAR
based on the

new theoretical
foundation, to

support parallel,
concurrent, and

distributed
computation,
cryptographic

and probabilistic
computation,
and low-level

resource
manipulation

Figure 2. CoAR, the suite of program verification tools proposed in this project

