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In this study, a real-time fMRI-based brain state decoder system to identify
different brain states, viewed as brain activity pattern, was developed and used to investigate
whether participants can control their brain activity pattern to match a pre-determined target
pattern using neurofeedback. The system attained an overall processing time that was faster than the
image acquisition time set at 2s. Using support vector machines, brain states associated with three
tasks (imagined tapping, word generation, and serial subtraction tasks) were successfully

reproduced as evidenced by the consistently high mean classification accuracy of greater than 80%
during feedback scans.
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Real-time functiona magnetic resonance
imaging (FMRI) is a non-invasive technique that
enables the reconstruction and anaysis of
functional magnetic resonance images as the
images are acquired. With real-time fMRI, it is
possible to observe the activity of the brain while
one thinks, feels, or learns. This gives rise to
several new and innovative ways of studying
brain function. Combined with machine learning
approaches, such as support vector machines
(SVM), real-time fMRI has enabled the real-time

classification or decoding of different brain states.

The decoded brain state, a reflection of the
activity of the whole brain, could then be
employed to provide a feedback signal for
participants to regulate, or a signal to control a
brain computer interface system.

The purpose of the study is twofold. First, it
ams to develop a working prototype of a
real-time fMRI-based brain state decoder system
in Nagoya University’s Brain and Mind Research
Center. Second, it also aims to examine the
feasibility of whether participants can control
their brain activity pattern to match to a
pre-determined target pattern using real-time
neurofeedback training.

(1) Real-time brain state decoder system

The conceptual design of the system is
outlined in Figure 1. It consists of 3 subsystems:
1) image acquisition subsystem, 2) real-time
analysis  subsystem, and 3) presentation
subsystem. The image acquisition subsystem,
consisting of the MRI scanner and its console, is
responsible for MR image acquisition, real-time
image reconstruction, and real-time image
transfer to the analysis subsystem. On the other
hand, the real-time analysis subsystem,
consisting of a dedicated workstation running the
Linux operating system, is responsible for the
real-time analysis of the acquired MR images
including 1) real-time image preprocessing such
as realignment, normalization, smoothing, and
masking, 2) statistical analysis using the general
linear model to identify activation regions, and 3)
real-time brain state decoding/classification using
machine learning algorithms, among others.
These methods are currently implemented in a
supporting software package called Guava,
which runs on Matlab. Depending on the
experimental design, this subsystem also
generates the needed signals for stimulus or
feedback. The presentation subsystem is
responsible for the presentation of stimuli as well
as feedback signals to the participant inside the
MRI scanner. Currently the subsystem supports

screen-projector combination for simple stimuli
and feedback presentations as well as video
camera-small humanoid robot combination for
brain machine interface (BMI) applications.
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Figure 1. Schematic representation of the
implemented real-time functional MRI system.

(2) Participants

For the imaging study, 33 participants were
recruited from Nagoya University. The study was
approved by the ethical committee of Nagoya
University School of Medicine with approval
number 2014-0272. All participants gave written
informed consent before participating in the
study.

(3) Experimental paradigm and tasks

All participants underwent functional MRI
scanning at Nagoya University's Brain and Mind
Research Center. Each scanning session consisted
of the following scans: 1) an anatomical localizer
run, 2) 3D MPRAGE scan for a reference
anatomical image, and 3) 4 task-based functional
MRI scans. The 4 task scans were designed in a
block manner and included a pre-training scan
and 3 feedback scans.

The pre-training scan consisted of rest and task
blocks alternated with each other with each block
lasting for 30s. The tasks included an imaginary
finger tapping task (MOTION task), a
word-generation task (WORD task), and a serial
subtraction task (COUNT task). For the
MOTION task, the participants were instructed to
imagine tapping their thumb and index finger in
both hands at their own pace. For the WORD
task, participants were instructed to generate as
many words related to “things inside the house”
as possible. For the COUNT task, participants
were instructed to initially think of a three-digit
number, then sequentially subtract the number 7
from it. If the difference reached 0 or negative
number, they had to think of another 3-digit
number again and had to repeat the same process.
After the pre-training scan, a support vector
machine was trained online using the obtained
functional images to classify the different brain
states associated with each task. The trained
SVM classifiers were then used in the succeeding
feedback scans.

The three feedback scans consisted of two
blocks for each task giving a total of 6 task



blocks. During the task blocks, participants were
asked to control the movement of an arrow
(representing the feedback signal) by matching
their ongoing brain state (brain activity pattern)
with that associated with the target task displayed
on screen. If the participant’s ongoing brain state
matched with the target state as identified by the
trained SVM, the arrow would move to the right.
The better the participant matched the target
brain state, the farther the arrow would move.

Questionnaires  were also  administered
including MoCA  (Montreal Cognitive
Assessment), SDST (symbol digit substitution
test), word generation (before and after the scan)
where participants had to write on a piece of
paper as many words related to things inside the
house as possible within 1 min, and a post-scan
questionnaire to evaluate the participants’
performance during feedback scans.

(4) Imaging

Functional and anatomical scans were acquired
using a Siemen’s Magnetom Verio (Siemens,
Erlanger, Germany) 3.0T scanner with a
32-channel head coil. T1-weighted MR images
were acquired using a 3D MPRAGE
(Magnetization Prepared Rapid Acquisition
Gradient Echo, Siemens) pulse sequence from all
participants for anatomical reference with the
following imaging parameters: TR = 2.5s, TE =
2.48ms, 192 sagittal slices with a distance factor
of 50% and Imm thickness, FOV = 256mm, 256
X 256 matrix dimension, and in-plane voxel
resolution of 1.0 x 1.0 mm” For the task fMRI
scans, the following parameters were used: 31
axial slices with a 25% distance factor, FOV =
192 mm, slice thickness = 4.0 mm, TR =2.0s, TE
= 30ms, flip angle = 80 degrees, 64 x 64 matrix
dimension, voxel size = 3 x 3 x 4 mm’, 375
volumes for the pre-training scan and 195
volumes for the feedback scans.

(5) Image preprocessing

All imaging data were preprocessed using
SPM12  (Wellcome  Trust Center for
Neuroimaging, London, UK). TI-weighted
images were first segmented into component
images including gray matter, white matter,
cerebrospinal fluid, and non-brain tissues. For
each functional data, the first 5 volumes were
discarded to account for the initial image
inhomogeneity. The data were then realigned,
co-registered to the anatomical image,
normalized to standard space, resampled to an
isotropic voxel resolution equal to 2 x 2 x 2 mm’,
and smoothed using an 8-mm FWHM Gaussian
filter.

(6) Offline analysis of task fMRI datasets
Offline analyses were also performed for the

task fMRI datasets (pre-training and feedback
scans) using SPM12 to identify regions activated
during each task. We used a box-car convolved
with the canonical hemodynamic response
function to model each task. To account for head
motion, we also included the 6 estimated motion
parameters in the model as nuisance regressors.
Contrast images were extracted for each task and
group results were obtained using a one-sample
t-test with the contrast images as input.
Significant voxels were identified using a
threshold value of p < 0.05 corrected for multiple
comparison using family-wise error cluster level

correction (FWEc) with cluster defining
threshold set to p = 0.001.
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Figure 2. SVM model with a hypothetical
2-voxel feature space.
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Figure 3. Representative timing data from two
scanning sessions.

(7) Support Vector Machine

To identify the brain states associated with the
different tasks used in the study, SVMs were used
for both real-time and offline analyses. In general,
given two classes of objects, SVM attempts to
determine a separating hyperplane (decision
boundary) optimizing the separation between the
two groups (see Figure 2) using the provided
training samples. The obtained model can then be
used to classify new samples not yet seen by the
SVM algorithm.

In this study, functional images from the
pre-training scan were used as training samples
to generate classification models for the different
tasks. Here, we used several SVM classification
models including Rest vs MOTION (to classify
brain activity patterns during rest blocks and
MOTION task blocks), Rest vs WORD, Rest vs
COUNT, MOTION vs ALL (to classify brain
activity patterns during MOTION task blocks and



all other blocks including rest, WORD, and
COUNT blocks), WORD vs ALL, and COUNT
vs ALL. The trained SVMs were then used to
classify, in real-time, the different brain activity
patterns during the feedback scans. We computed
the accuracy, task predictive value, and distance d
(see Figure 2) to evaluate SVM’s performance.

(1) System performance

Figure 3 shows representative timing
performance of the implemented real-time fMRI
system. Image preprocessing time per image
volume (64 x 64 x 31 in size) was consistently

less than 0.5s for the duration of the scan (Fig 3a).

On the other hand, the overall timing per image
volume including real-time image reconstruction,
functional image transfer from the MRI scanner,
image preprocessing, feedback presentation, as
well as waiting time for the next image to arrive
was less than scan repetition time set to 2.0s (Fig
3b). The system thus achieved a fully real-time
processing capability.
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(c) Serial subtraction task

Figure 4. Pre-training group activation maps for
the 3 tasks. Images are displayed using
neurological convention (Left is left).
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Figure 5. Group activation maps of the different
tasks during feedback scans. FB1 — feedback
scan 1, FB2 — feedback scan 2, and FB3 -
feedback scan 3

(2) Task activation patterns

Figure 4 shows the group activation maps of
the 3 tasks used in the study during pre-training
scan. For the MOTION task, a large activated
cluster with peak in the right postcentral
gyrus/BA40 and another cluster in the right
cerebellum were observed. Deactivation was
observed in the left lingual gyrus. On the other

hand, several activations were observed in the
right cerebellum, left middle frontal gyrus, left
medial frontal gyrus/BA6, right extra nuclear,
and right parahippocampal gyrus for the WORD
task. The right precuneus/BA31, right anterior
cingulate gyrus/BA32, right supramarginal gyrus,
and left inferior occipital gyrus/BA18 were
deactivated. Finally, the COUNT task activated
the visuospatial network nodes including the
bilateral inferior parietal lobule, right and left
cerebellum, and right extra nuclear and
deactivated nodes in the default mode network
including the posterior cingulate cortex
(PCC)/precuneus, left medial frontal gyrus,
bilateral inferior frontal gyrus, right superior
temporal gyrus, and left cerebellum. The full list
of activated regions and the MNI coordinates of
the peak activations is given in Table 1.

Table 1. Group activation during pre-training
scan. MNI coordinates of the peak location,
cluster size, z-value, and regions.

[ Tasc | X [ v 1 2 |custersize| Zvalue | Regions |
[CoonT |

28 -62 -26 2900 6.02 R cerebellum, declive

-24 58 -32 975 5.58 Left cerebellum, anterior lobe
28 28 4 11111 5.48 Right extra-nuclear

-40 -40 44 2520 5.42 Leftinferior parietal lobule
50 -30 46 1822 5.32 Right inferior parietal lobule

-4 44 -10 5659 5.85 L medial frontal gyrus
-32 18 -16 8912 5.76 Leftinferior frontal gyrus

48 -58 26 4168 5.59 Right superior temporal gyrus
-24 -80 -32 321 5.28 Left cerebellum, uvula

0 -56 50 4907 5.07 Left precuneus

32 20 -20 3045 4.84 Right inferior frontal gyrus
MOTION
-10 -88 -2 635 4.98 Leftlingual gyrus

64 -30 20 46566 6.85 Right postcentral gyrus/BA40
32 56 -24 5462 5.60 Right cerebellum, declive

32 -70 -48 7026 6.79 Right cerebellum
42 22 24 11785 6.06 Left middle frontal gyrus
-4 14 52 6.01 Left medial frontal gyrus/BAG
20 6 14 1012 4.95 Right extra nuclear
36 -34 -12 559 4.42 Right parahippocampal gyrus

6 -52 32 278 4.45 Right precuneus/BA31
14 24 -12 872 4.44 Right anterior cingulate/BA32
58 -56 36 544 4.33 Right supramarginal gyrus
-38 -86 -16 1501 4.31 Leftinferior occipital gyrus/BA18

Table 2. Total number of active voxels (activated
and de-activated) in the group activation maps
for the 3 tasks used in the study. Pre -
pre-training scan; FB1 — feedback scan 1; FB2 —
feedback scan 2, and FB3 — feedback scan 3.

[ dask [ pre | FB1 | FB2 [ FB3 | TOTAL
[0 46,340 24211 19,252 769 90,572

MOTION 52,663 41,525 19,927 3,744 117,859
[UGEGE 23,577 22,246 24,851 6,938 77,612
TOTAL 122,580 87,982 64,030 11,451 286,043

Figure 5 shows the group activation maps
during feedback scans (top to bottom) for the
different tasks (left to right). Based on this figure,
similar regions were mostly activated during the
feedback scans as compared to that during the
pre-training scan, although a decreased in the
number of activated voxels could be observed.
This can be seen in Table 2, where a significantly
large number of voxels were active during
pre-training scan, followed by a decreasing trend
for each succeeding feedback scans.



Table 3. SVM classification performance during
feedback runs (offline). FB1 — feedback scan 1;
FB2 — feedback scan 2; FB3 — feedback scan3;
RvsM — rest vs MOTION; RvsW — rest vs
WORD; RvsC — rest vs COUNT;,; MvsA -
MOTION vs ALL; WvsA — WORD vs ALL;
CvsA — COUNT vs ALL; ACC — accuracy; TPV
— task predictive value

|| Model | _AcC(%) | TPV (%) | Model [ ACC(%) | TPV (%) |
FB1

RvsM 71.49 81.57 MvsA 61.76 84.51
RvsW 77.96 88.43 WysA 67.21 92.35
RvsC 76.79 86.47 CvsA 64.02 87.45
FB2
RvsM 72.44 84.51 MvsA 62.32 83.14
RvsW 74.48 87.45 WusA 64.61 88.82
RvsC 77.06 87.06 CvsA 65.20 87.45
FB3
RvsM 7231 82.94 MvsA 63.10 87.25
RusW 72.53 84.31 WysA 62.97 84.12
RvsC 73.57 81.57 CvsA 62.48 82.16

Figure 6. Individual (thin lines) and average
(thick line) task predictive values for rest vs task
(MOTION, WORD, COUNT) classification
models during feedback runs.
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Figure 7. Individual average distance measure
for each feedback scans. FB1 — feedback scan 1;
FB2 — feedback scan 2; FB3 — feedback scan 3

(3) SVM classification performance

SVM classification performance is
summarized in Table 3. Accuracies for rest vs
task (MOTION, WORD, COUNT) models were
above 70%, while task predictive values were all
above 80%. The relatively low classification
accuracies may be due to the possibility of
participants practicing the tasks during rest
blocks instead of just doing nothing.
Classification accuracies for task (MOTION,
WORD, COUNT) vs ALL models were only a
little above 60%. But the task predictive values
were again all above 80%. These low accuracies
could also be due to the misclassification of
images during rest blocks. The high predictive
values for all tasks, however, indicate that the

trained SVMs were able to successfully identify
the associated brain activation patterns for these
tasks.

Individual and average task predictive values
are shown in Figure 6. Although individual
differences in SVM performance can be observed,
a paired sample t-test showed no significant
change in the predictive values between feedback
scans in all 3 tasks. This indicates that on average,
the performance of the trained SVMs was
consistent throughout feedback scans. Computed
distance measures (Figure 7) also showed
individual variability for each feedback scan, but
overall, no significant change was observed.

(4) Correlation with behavioral measures

Several SVM performance measures showed
correlation with SDST scores. Task predictive
values for rest vs WORD classification model
during feedback scan 1 positively correlated with
pre- (r = 0.539) and post-scan (r = 0.541) SDST
scores, while that of WORD vs ALL model
negatively correlated with pre-scan SDST score
(r = -0.558). The accuracy of rest vs MOTION
during feedback scan 3 also correlated with
pre-scan SDST score (r = 0.526), while the task
predictive values during feedback scan 1
positively correlated with post-scan SDST score
(r = 0.545) and the difference between pre- and
post-scan SDST scores (r = 0.531). The task
predictive values of MOTION vs ALL during
feedback scan 1 and scan 3 also correlated with
post-scan SDST scores with r = 0.568 and r =
0.510, respectively.

The difference between task predictive values
of rest vs WORD classification model during
feedback scans 3 and 1 were negatively
correlated with pre-scan SDST score (r =-0.651),
post-scan SDST score (r = -0.5901), and the
questionnaire item related to the participant’s
performance during WORD task (r = -0.676).
Finally, the distance measure of rest vs COUNT
classification model during feedback scan 2
negatively correlated with word generation test
score before the scan (r = -0.562) and the
difference before and after the scan (r = 0.622).
These strong correlations with behavioral test
scores imply that the observed differences in
accuracies and task predictive values were
reflective of each individual’s performance and
not on the classification of the trained SVMs.
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