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研究成果の概要（和文）：本研究では、即時に脳機能状態を識別して可視化する、リアルタイム機能的MRIによ
る脳機能識別システムを独自に開発し、被験者が自分の脳の状態を観察しながら、目的とするパターンに制御す
る、つまり、ニューロフィードバック制御、の可能性について検証した。結果では、開発したシステムは、全体
の処理を、画像取得時間（2秒）よりも速く行う事が出来た。3つのタスク（指を鳴らす行為を想像、語想起、引
き算）について、リアルタイム機能的MRIを撮像しながら、被検者に識別、再現させるフィードバック実験で
は、サポートベクターマシンを用いる事により、一貫して80%以上の平均識別精度で、目的とする脳状態を再現
する事ができた。

研究成果の概要（英文）：In this study, a real-time fMRI-based brain state decoder system to identify
 different brain states, viewed as brain activity pattern, was developed and used to investigate 
whether participants can control their brain activity pattern to match a pre-determined target 
pattern using neurofeedback. The system attained an overall processing time that was faster than the
 image acquisition time set at 2s. Using support vector machines, brain states associated with three
 tasks (imagined tapping, word generation, and serial subtraction tasks) were successfully 
reproduced as evidenced by the consistently high mean classification accuracy of greater than 80% 
during feedback scans.
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１．研究開始当初の背景 
  Real-time functional magnetic resonance 
imaging (fMRI) is a non-invasive technique that 
enables the reconstruction and analysis of 
functional magnetic resonance images as the 
images are acquired. With real-time fMRI, it is 
possible to observe the activity of the brain while 
one thinks, feels, or learns. This gives rise to 
several new and innovative ways of studying 
brain function. Combined with machine learning 
approaches, such as support vector machines 
(SVM), real-time fMRI has enabled the real-time 
classification or decoding of different brain states. 
The decoded brain state, a reflection of the 
activity of the whole brain, could then be 
employed to provide a feedback signal for 
participants to regulate, or a signal to control a 
brain computer interface system.  
 
２．研究の目的 
  The purpose of the study is twofold. First, it 
aims to develop a working prototype of a 
real-time fMRI-based brain state decoder system 
in Nagoya University’s Brain and Mind Research 
Center. Second, it also aims to examine the 
feasibility of whether participants can control 
their brain activity pattern to match to a 
pre-determined target pattern using real-time 
neurofeedback training. 
 
３．研究の方法 
(1) Real-time brain state decoder system 
  The conceptual design of the system is 
outlined in Figure 1. It consists of 3 subsystems: 
1) image acquisition subsystem, 2) real-time 
analysis subsystem, and 3) presentation 
subsystem. The image acquisition subsystem, 
consisting of the MRI scanner and its console, is 
responsible for MR image acquisition, real-time 
image reconstruction, and real-time image 
transfer to the analysis subsystem. On the other 
hand, the real-time analysis subsystem, 
consisting of a dedicated workstation running the 
Linux operating system, is responsible for the 
real-time analysis of the acquired MR images 
including 1) real-time image preprocessing such 
as realignment, normalization, smoothing, and 
masking, 2) statistical analysis using the general 
linear model to identify activation regions, and 3) 
real-time brain state decoding/classification using 
machine learning algorithms, among others. 
These methods are currently implemented in a 
supporting software package called Guava, 
which runs on Matlab. Depending on the 
experimental design, this subsystem also 
generates the needed signals for stimulus or 
feedback. The presentation subsystem is 
responsible for the presentation of stimuli as well 
as feedback signals to the participant inside the 
MRI scanner. Currently the subsystem supports 

screen-projector combination for simple stimuli 
and feedback presentations as well as video 
camera-small humanoid robot combination for 
brain machine interface (BMI) applications.  
 

 
Figure 1. Schematic representation of the 
implemented real-time functional MRI system. 
 
(2) Participants 
  For the imaging study, 33 participants were 
recruited from Nagoya University. The study was 
approved by the ethical committee of Nagoya 
University School of Medicine with approval 
number 2014-0272. All participants gave written 
informed consent before participating in the 
study.  
 
(3) Experimental paradigm and tasks 
  All participants underwent functional MRI 
scanning at Nagoya University's Brain and Mind 
Research Center. Each scanning session consisted 
of the following scans: 1) an anatomical localizer 
run, 2) 3D MPRAGE scan for a reference 
anatomical image, and 3) 4 task-based functional 
MRI scans. The 4 task scans were designed in a 
block manner and included a pre-training scan 
and 3 feedback scans.  
  The pre-training scan consisted of rest and task 
blocks alternated with each other with each block 
lasting for 30s. The tasks included an imaginary 
finger tapping task (MOTION task), a 
word-generation task (WORD task), and a serial 
subtraction task (COUNT task). For the 
MOTION task, the participants were instructed to 
imagine tapping their thumb and index finger in 
both hands at their own pace. For the WORD 
task, participants were instructed to generate as 
many words related to “things inside the house” 
as possible. For the COUNT task, participants 
were instructed to initially think of a three-digit 
number, then sequentially subtract the number 7 
from it. If the difference reached 0 or negative 
number, they had to think of another 3-digit 
number again and had to repeat the same process. 
After the pre-training scan, a support vector 
machine was trained online using the obtained 
functional images to classify the different brain 
states associated with each task. The trained 
SVM classifiers were then used in the succeeding 
feedback scans.  
  The three feedback scans consisted of two 
blocks for each task giving a total of 6 task 



blocks. During the task blocks, participants were 
asked to control the movement of an arrow 
(representing the feedback signal) by matching 
their ongoing brain state (brain activity pattern) 
with that associated with the target task displayed 
on screen. If the participant’s ongoing brain state 
matched with the target state as identified by the 
trained SVM, the arrow would move to the right. 
The better the participant matched the target 
brain state, the farther the arrow would move.  
  Questionnaires were also administered 
including MoCA (Montreal Cognitive 
Assessment), SDST (symbol digit substitution 
test), word generation (before and after the scan) 
where participants had to write on a piece of 
paper as many words related to things inside the 
house as possible within 1 min, and a post-scan 
questionnaire to evaluate the participants’ 
performance during feedback scans.  
 
(4) Imaging 
  Functional and anatomical scans were acquired 
using a Siemen’s Magnetom Verio (Siemens, 
Erlanger, Germany) 3.0T scanner with a 
32-channel head coil. T1-weighted MR images 
were acquired using a 3D MPRAGE 
(Magnetization Prepared Rapid Acquisition 
Gradient Echo, Siemens) pulse sequence from all 
participants for anatomical reference with the 
following imaging parameters: TR = 2.5s, TE = 
2.48ms, 192 sagittal slices with a distance factor 
of 50% and 1mm thickness, FOV = 256mm, 256 
x 256 matrix dimension, and in-plane voxel 
resolution of 1.0 x 1.0 mm2. For the task fMRI 
scans, the following parameters were used: 31 
axial slices with a 25% distance factor, FOV = 
192 mm, slice thickness = 4.0 mm, TR = 2.0s, TE 
= 30ms, flip angle = 80 degrees, 64 x 64 matrix 
dimension, voxel size = 3 x 3 x 4 mm3, 375 
volumes for the pre-training scan and 195 
volumes for the feedback scans.  
 
(5) Image preprocessing 
  All imaging data were preprocessed using 
SPM12 (Wellcome Trust Center for 
Neuroimaging, London, UK). T1-weighted 
images were first segmented into component 
images including gray matter, white matter, 
cerebrospinal fluid, and non-brain tissues. For 
each functional data, the first 5 volumes were 
discarded to account for the initial image 
inhomogeneity. The data were then realigned, 
co-registered to the anatomical image, 
normalized to standard space, resampled to an 
isotropic voxel resolution equal to 2 x 2 x 2 mm3, 
and smoothed using an 8-mm FWHM Gaussian 
filter.  
 
(6) Offline analysis of task fMRI datasets 
  Offline analyses were also performed for the 

task fMRI datasets (pre-training and feedback 
scans) using SPM12 to identify regions activated 
during each task. We used a box-car convolved 
with the canonical hemodynamic response 
function to model each task. To account for head 
motion, we also included the 6 estimated motion 
parameters in the model as nuisance regressors. 
Contrast images were extracted for each task and 
group results were obtained using a one-sample 
t-test with the contrast images as input. 
Significant voxels were identified using a 
threshold value of p < 0.05 corrected for multiple 
comparison using family-wise error cluster level 
correction (FWEc) with cluster defining 
threshold set to p = 0.001. 

 
Figure 2. SVM model with a hypothetical 
2-voxel feature space. 
 

 
Figure 3. Representative timing data from two 
scanning sessions.  
 
(7) Support Vector Machine 
  To identify the brain states associated with the 
different tasks used in the study, SVMs were used 
for both real-time and offline analyses. In general, 
given two classes of objects, SVM attempts to 
determine a separating hyperplane (decision 
boundary) optimizing the separation between the 
two groups (see Figure 2) using the provided 
training samples. The obtained model can then be 
used to classify new samples not yet seen by the 
SVM algorithm.  
  In this study, functional images from the 
pre-training scan were used as training samples 
to generate classification models for the different 
tasks. Here, we used several SVM classification 
models including Rest vs MOTION (to classify 
brain activity patterns during rest blocks and 
MOTION task blocks), Rest vs WORD, Rest vs 
COUNT, MOTION vs ALL (to classify brain 
activity patterns during MOTION task blocks and 



all other blocks including rest, WORD, and 
COUNT blocks), WORD vs ALL, and COUNT 
vs ALL. The trained SVMs were then used to 
classify, in real-time, the different brain activity 
patterns during the feedback scans. We computed 
the accuracy, task predictive value, and distance d 
(see Figure 2) to evaluate SVM’s performance.  
 
４．研究成果 
(1) System performance 
  Figure 3 shows representative timing 
performance of the implemented real-time fMRI 
system. Image preprocessing time per image 
volume (64 x 64 x 31 in size) was consistently 
less than 0.5s for the duration of the scan (Fig 3a). 
On the other hand, the overall timing per image 
volume including real-time image reconstruction, 
functional image transfer from the MRI scanner, 
image preprocessing, feedback presentation, as 
well as waiting time for the next image to arrive 
was less than scan repetition time set to 2.0s (Fig 
3b). The system thus achieved a fully real-time 
processing capability. 
 

 
Figure 4. Pre-training group activation maps for 
the 3 tasks. Images are displayed using 
neurological convention (Left is left). 

 
Figure 5. Group activation maps of the different 
tasks during feedback scans. FB1 – feedback 
scan 1, FB2 – feedback scan 2, and FB3 – 
feedback scan 3 
 
(2) Task activation patterns 
  Figure 4 shows the group activation maps of 
the 3 tasks used in the study during pre-training 
scan. For the MOTION task, a large activated 
cluster with peak in the right postcentral 
gyrus/BA40 and another cluster in the right 
cerebellum were observed. Deactivation was 
observed in the left lingual gyrus. On the other 

hand, several activations were observed in the 
right cerebellum, left middle frontal gyrus, left 
medial frontal gyrus/BA6, right extra nuclear, 
and right parahippocampal gyrus for the WORD 
task. The right precuneus/BA31, right anterior 
cingulate gyrus/BA32, right supramarginal gyrus, 
and left inferior occipital gyrus/BA18 were 
deactivated. Finally, the COUNT task activated 
the visuospatial network nodes including the 
bilateral inferior parietal lobule, right and left 
cerebellum, and right extra nuclear and 
deactivated nodes in the default mode network 
including the posterior cingulate cortex 
(PCC)/precuneus, left medial frontal gyrus, 
bilateral inferior frontal gyrus, right superior 
temporal gyrus, and left cerebellum. The full list 
of activated regions and the MNI coordinates of 
the peak activations is given in Table 1. 
 
Table 1. Group activation during pre-training 
scan. MNI coordinates of the peak location, 
cluster size, z-value, and regions. 

 
 
Table 2. Total number of active voxels (activated 
and de-activated) in the group activation maps 
for the 3 tasks used in the study. Pre – 
pre-training scan; FB1 – feedback scan 1; FB2 – 
feedback scan 2, and FB3 – feedback scan 3. 

 
 
  Figure 5 shows the group activation maps 
during feedback scans (top to bottom) for the 
different tasks (left to right). Based on this figure, 
similar regions were mostly activated during the 
feedback scans as compared to that during the 
pre-training scan, although a decreased in the 
number of activated voxels could be observed. 
This can be seen in Table 2, where a significantly 
large number of voxels were active during 
pre-training scan, followed by a decreasing trend 
for each succeeding feedback scans. 
 



Table 3. SVM classification performance during 
feedback runs (offline). FB1 – feedback scan 1; 
FB2 – feedback scan 2; FB3 – feedback scan3; 
RvsM – rest vs MOTION; RvsW – rest vs 
WORD; RvsC – rest vs COUNT; MvsA – 
MOTION vs ALL; WvsA – WORD vs ALL; 
CvsA – COUNT vs ALL; ACC – accuracy; TPV 
– task predictive value 

 
 

 
Figure 6. Individual (thin lines) and average 
(thick line) task predictive values for rest vs task 
(MOTION, WORD, COUNT) classification 
models during feedback runs. 
 

 
Figure 7. Individual average distance measure 
for each feedback scans. FB1 – feedback scan 1; 
FB2 – feedback scan 2; FB3 – feedback scan 3 
 
(3) SVM classification performance 
  SVM classification performance is 
summarized in Table 3. Accuracies for rest vs 
task (MOTION, WORD, COUNT) models were 
above 70%, while task predictive values were all 
above 80%. The relatively low classification 
accuracies may be due to the possibility of 
participants practicing the tasks during rest 
blocks instead of just doing nothing. 
Classification accuracies for task (MOTION, 
WORD, COUNT) vs ALL models were only a 
little above 60%. But the task predictive values 
were again all above 80%. These low accuracies 
could also be due to the misclassification of 
images during rest blocks. The high predictive 
values for all tasks, however, indicate that the 

trained SVMs were able to successfully identify 
the associated brain activation patterns for these 
tasks. 
  Individual and average task predictive values 
are shown in Figure 6. Although individual 
differences in SVM performance can be observed, 
a paired sample t-test showed no significant 
change in the predictive values between feedback 
scans in all 3 tasks. This indicates that on average, 
the performance of the trained SVMs was 
consistent throughout feedback scans. Computed 
distance measures (Figure 7) also showed 
individual variability for each feedback scan, but 
overall, no significant change was observed. 
 
(4) Correlation with behavioral measures 
  Several SVM performance measures showed 
correlation with SDST scores. Task predictive 
values for rest vs WORD classification model 
during feedback scan 1 positively correlated with 
pre- (r = 0.539) and post-scan (r = 0.541) SDST 
scores, while that of WORD vs ALL model 
negatively correlated with pre-scan SDST score 
(r = -0.558). The accuracy of rest vs MOTION 
during feedback scan 3 also correlated with 
pre-scan SDST score (r = 0.526), while the task 
predictive values during feedback scan 1 
positively correlated with post-scan SDST score 
(r = 0.545) and the difference between pre- and 
post-scan SDST scores (r = 0.531). The task 
predictive values of MOTION vs ALL during 
feedback scan 1 and scan 3 also correlated with 
post-scan SDST scores with r = 0.568 and r = 
0.510, respectively. 
  The difference between task predictive values 
of rest vs WORD classification model during 
feedback scans 3 and 1 were negatively 
correlated with pre-scan SDST score (r = -0.651), 
post-scan SDST score (r = -0.5901), and the 
questionnaire item related to the participant’s 
performance during WORD task (r = -0.676). 
Finally, the distance measure of rest vs COUNT 
classification model during feedback scan 2 
negatively correlated with word generation test 
score before the scan (r = -0.562) and the 
difference before and after the scan (r = 0.622). 
These strong correlations with behavioral test 
scores imply that the observed differences in 
accuracies and task predictive values were 
reflective of each individual’s performance and 
not on the classification of the trained SVMs. 
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