科学研究費助成事業

研究成果報告書

研究成果の概要(和文):CTスキャナなどの医療用X線画像診断はX線被曝の問題が付きまとう。X線センサーの 感度を従来よりも桁違いに高くしてX線被曝線量を桁違いに抑えることで、高度で安全で様々なX線画像診断を気 軽に制限なく誰もが受けることができる。本研究ではトレンチ構造型フォトダイオードを採用した次世代の直接 変換型シリコンX線センサーを提案する。この提案X線センサーは高感度・高速応答・長デバイス寿命・低消費電 力・高エネルギー分解能の特徴を並立する。提案X線センサーを試作し、理論限界に迫る吸収X線 - 電流信号変換 効率を実証した。

研究成果の概要(英文): Medical X-ray diagnosis devices such as CT scanners entails the problem of X-ray radiation dose. By improving the sensitivity of the X-ray sensors, the X-ray radiation dose can be decreased and everyone can easily use various kinds of safe X-ray diagnosis without restrictions. In this study, we propose a direct conversion type silicon X-ray sensor adopting a trench-structured photodiodes. This proposed X-ray sensor has the features of high sensitivity, high speed response, long device lifetime, low power consumption, and high energy resolution. The prototype X-ray sensor was fabricated, and this sensor demonstrated the absorbed X-ray-to-current signal conversion efficiency approaching the theoretical limit.

研究分野: 放射線計測

キーワード: X線センサー トレンチ構造型フォトダイオード 低被曝線量 半導体デバイス

1. 研究開始当初の背景

X線CTなどの医療用X線画像診断は病気 等の早期発見のために幅広く利用されてお り、この照射X線による人体への医療被曝の 低減化が求められている。この要望を満たす ために、高感度なX線センサーの開発が求め られ、様々なX線検出感度の向上を目指した 研究が行われている。

X線センサーはX線の検出の仕方によって 間接検出方式と直接検出方式に分類される。 直接検出方式では蛍光物質でX線を一旦可視 光へ変換してこの可視光を計測する間接検 出方式で見られる変換損失や変換可視光の 等方的拡散がなく、X線の電気信号変換効率 と時間・空間分解能が高い。従って、直接検 出方式では汎用の間接検出方式と比べて感 度を改善でき、被曝線量の抑制が実現できる。 直接検出方式でシリコンをX線センサーの母 材とした場合、電荷キャリアの寿命が他の CdTe、HgI2 センサー材料と比べて桁違いに 長い、素材コストが安い、加工が容易などの 利点がある。但し、X線はシリコン中を数十 mm 透過するので、センサー構造を工夫する 必要がある。現在、ストリップライン構造の フォトダイオードを形成したシリコンX線セ ンサーが提案されているが、シリコンウエハ 基板の不純物濃度を限界近い 3.0×10¹²cm⁻³ まで低くし、且つフォトダイオード電極間隔 が 500μm と広く、600 ボルトもの高いバイ アス電圧をフォトダイオードへ印加する必 要がある。よって、デバイス寿命が短くなる ことや応答時間が短くなるという課題があ る。

研究の目的

本研究では高感度・高速応答・長デバイス 寿命・低消費電力・高エネルギー分解能・高 位置分解能・素材が安価という特徴を並列し て有する直接検出方式用トレンチ構造型シ リコンX線フォトダイオードを提案する。こ のトレンチ型フォトダイオードは図1に示す ように、ウエハ基板を P 型シリコン半導体 にテマ オトダイオードをトレンチ状に形成したX線 検出センサーである。

図1:トレンチ型フォトダイオードによる直 接検出方式X線センサーの概略

このセンサーはトレンチの深さ・長さ・幅・ 間隔の調整、センサーへのX線の照射方向(上 面から、側面から)などの自由度が高く、利 用目的や作製条件など多様なニーズに合っ たX線センサーを自由に作ることができる。 また、このトレンチ型フォトダイオードはあ る程度濃い不純物濃度のシリコンウエハか ら作製でき、且つ数十ボルトの低バイアス電 Eにて画素内をほぼ空乏化できる。また、ト レンチ長さをX線の透過長程度に設計し、セ ンサーの側面方向からX線を入射させること で高いX線の電気信号変換効率を実現できる。 高感度・低バイアス電圧・高速応答など、様々 な利点を有する直接検出方式用トレンチ構 造型シリコンX線フォトダイオードを設計・ 試作し、X線検出器としての基本機能を実証 していくことを目指した。

研究の方法

トレンチ構造型フォトダイオードの設計、 試作、評価の順に行う。設計ではデバイスシ ミュレータにて適切なトレンチフォトダイ オードの形状を導き出し、その結果をもとに トレンチフォトダイオードのレイアウト図 面を作成する。次にトレンチフォトダイオー ドを含む X線センサーチップを試作し、断面 SEM 写真と半導体パラメータを利用した電 流一電圧特性を測定し、トレンチ構造型フォ トダイオードが正常なダイオード特性を示 すことを確認する。次に X線を試作した X線 センサーに上面から照射し、センサーに吸収 された X線のうち、どの割合がトレンチフォ トダイオードに回収されて電気信号に変換 されたかを見積もる。

4. 研究成果

提案するトレンチ構造型フォトダイオー ドを形成し、数十ボルトの低いバイアス電圧 で画素内の大部分を空乏層で満たすために、 抵抗率が 1500±500Ωcm、厚さが 550µm の P 型 FZ ウエハ基板を用いた。

まずは上面照射方式での感度特性を評価 する。ウエハ基板を P 型半導体、信号検知側 を N 型半導体としたフォトダイオードをト レンチ状に形成した。トレンチ周囲に形成し た空乏層が X 線の検出領域となり、この長い 空乏層に沿ってX線を入射させることで高い X 線の検出効率が達成できる。図2に提案 X 線センサー全体のレイアウト図を、図3に画 素のレイアウト図をそれぞれ示す。

図3 X線センサー画素のレイアウト図

センサーチップは 0.35µm、1-Poly、1-Metal プロセスを用いて試作した。チップサイズは 5.0×20.0mm² である。画素のサイズは 1.0×1.0mm²であり、一つの画素に8個のトレ ンチフォトダイオードを形成している。トレ ンチフォトダイオードの間隔は、逆バイアス 電圧の印加時に形成される空乏層幅の二倍 となるように設計している。今回では、トレ ンチフォトダイオードの間隔は120µm、幅は 17µm である。図4に試作したX線センサー の写真を、図5にトレンチフォトダイオード の断面 SEM 写真を示す。トレンチフォトダ イオードの深さは約300µm である。

図4 試作した X線センサー

図 5 トレンチ構造型フォトダイオードの断 面 SEM 写真

試作した深さ300μmのトレンチ構造型 PN 接合フォトダイオードの電流-電圧特性を 図6に示す。

ドの電流-電圧特性1

図 6-2 試作したトレンチフォトダイオー ドの電流-電圧特性 2

逆バイアス時の漏れ電流は 500nA 以下で降 伏現象は観測されず、また、順バイアス時の ダイオード電流は数十 μA であることから試 作したトレンチフォトダイオードはダイオ ードとして正常な電流-電圧特性を示し、X 線検出に有効であることを確認した。今後は 10nA 以下の、更に低い漏れ電流を示すトレ ンチフォトダイオードを形成していく。

X線を試作センサーに照射し、センサーが 吸収した X線エネルギーのうちどの割合が トレンチフォトダイオードによって電気信 号に変換されたかを評価した。

タングステンターゲットを有する X 線管 を用いて X 線を得る。今回は X 線管の管電圧 を 80kV、管電流を 1.0~3.0mA とした。 画素 サイズは 1mm 角であるので、X 線スペクト ロメータを用いて、まずは 1mm 角当たりに 入射する X 線のエネルギースペクトルを測 定する。次にセンサー画素を X 線発生装置と X 線スペクトロメータとの間に挟み、センサ ー画素を透過後の X 線のエネルギースペク トルを測定する。前者のエネルギースペクト ルから後者を差し引き、センサー画素体積 (1mm×1mm×550µm)にて発生する電気信号 キャリアの電流換算値を算出した。この電流 換算値が、センサー画素が検知できる上限の 電流信号値となる。

次に、フォトダイオードに印加する逆バイ アス電圧値を 1,5,10,15,20,25V として X 線照 射時と X 線無照射時での画素からの電流信 号を測定し、X 線無照射時オフセット電流を 差し引くことで X 線検知電流を導出した。図 7 に試作した X 線センサーを用いて X 線検知 電流を測定する様子を示す。図 8 に電流信号 の測定概略図を示す。電流信号は汎用の半導 体パラメータアナライザを用いて測定した。

半導体パラメータアナライザへ接続

図 7 試作したトレンチフォトダイオードを 組み込んだX線センサーによるX線検知電流 の測定風景

図 8 半導体パラメータアナライザを用いた トレンチフォトダイオードの X 線検知電流 の測定方法

以上の、センサー画素体積で発生する上限 電流換算値とX線センサー画素からのX線検 知電流をまとめ、トレンチフォトダイオード の逆バイアス電圧とX線検知電流の関係を 図9に示す。図中のマーカーはX線検知電流 を、実線は上限電流換算値をそれぞれ示す。 図9からバイアス電圧の上昇に伴い空乏層幅 がトレンチ間隔に迫り、X線検知電流が上限 値に近づく傾向が観測された。今回試作した X線センサー構造では20V程度の低いバイア ス電圧で十分に動作できることが確認され た。

図9 トレンチフォトダイオードによる X 線 検知電流と印加逆バイアス電圧との関係図。 実線は正味の X 線検知電流を示し、点線は上 限電流換算値を示す。X 線発生装置の管電圧 は 80kV 一定、管電流は 1.0、2.0、3.0mA と した。

表1 吸収X線-電流変換効率

Reverse bias voltage [V]	Conversion efficiency (%) at specific tube current		
	1.0 [mA]	2.0 [mA]	3.0 [mA]
1	12.2	12.3	13.1
5	26.2	26.7	24.8
10	58.4	56.1	56.6
15	74.0	74.0	75.9
20	83.6	84.0	84.4
25	87.5	87.6	91.1

表1に、X線検知電流を上限電流換算値で 割って得た吸収X線-電流変換効率を示す。 管電流3.0mA、印加逆バイアス電圧25Vの条 件の下で得られた変換効率は91.1%である。 今回試作したX線センサーにおける不感領 域であるトレンチ空洞部の体積は画素中の 5.7%であった。従って、吸収X線-電流変換 効率の理論限界は94.3%となる。試作したX 線センサーのトレンチの深さは約300µmで あり、センサー厚の550µmと比べるとやや浅 いことと、裏面にバイアス電極を設けなかっ たことなどから、変換効率はそれらの改善に よって更に向上できると考えられる。

今後は側面照射方式による照射 X 線-電 流変換効率、トレンチフォトダイオードの狭 間隔による信号電荷収集時間の短縮化、逆バ イアス 20V 時の漏れ電流を実用上問題ない 程度の数 nA にすること、シリコン中におけ るX線のコンプトン散乱によるX線画像のぼ やけ、次世代のX線 CT の要素技術であるシ ングルフォトンカウントの各評価実験を行 っていく。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計1件)

T.Ariyoshi, S.Funaki, K.Sakamoto, A.Baba, and Y.Arima: "X-ray-to-current signal conversion characteristics of trench-structured photodiodes for direct-conversion-type silicon X-ray sensor", Japanese Journal of Applied Physics, Volume 56 Issue 4S, pp.04CH06-1~04CH06-5 (2017). (Doi: 10.7567/JJAP.56.04CH06) (査読あり) 〔学会発表〕(計1件) T.Ariyoshi, S.Funaki, K.Sakamoto, A.Baba, and <u>Y.Arima</u>: "Sensitivity Properties of a Direct Conversion Silicon X-ray Sensor with Photodiodes", Trench-Structured 2016 International Conference on Solid State Devices and Materials, pp.141~142 (2016). 2016.9.27, つくば国際会議場(茨城県つくば市) 6. 研究組織 (1)研究代表者 有吉 哲也 (ARIYOSHI TETSUYA) 九州工業大学・マイクロ化総合技術センタ ー・助教 研究者番号:60432738 (2)研究分担者 有馬 裕 (ARIMA YUTAKA) 九州工業大学・マイクロ化総合技術センタ ー・教授 研究者番号:10325582 馬場 昭好(BABA AKIYOSHI) 九州工業大学・マイクロ化総合技術センタ ー・准教授 研究者番号:80304872