交付決定額(研究期間全体):(直接経費)

科学研究費助成事業

女子 つった

研究成果報告書

	十成	29	4	υЯ	20	口坑江
機関番号: 1 4 3 0 3						
研究種目: 基盤研究(C) (一般)						
研究期間: 2014~2016						
課題番号: 2 6 4 2 0 1 7 5						
研究課題名(和文)履歴復元力特性を有する多入力配管系の地震時の最大応行	答量推定	定に関	する	研究		
研究課題名(英文)Study on Method for Estimating Maximum Response for Seismic Design of Multiple Supported Elastic-Plastic Piping Systems						
研究代表者						
曽根 彰(Sone, Akira)						
京都工芸繊維大学・機械工学系・教授						
研究者番号:2 0 1 9 7 0 1 5						

3,700,000円

研究成果の概要(和文):摩擦特性を有する1入力灰家計に対して手案されている手法を、2入力を受ける弾塑 性配管系に応用し、求められた推定値と時刻歴応答解析により求められる厳密解との比較、及び2入力の加振実 験を行い、以下の結果を得られた。(1)2入力の相関係数が増加すると、応答低減係数が増加する。また、相 関係数の増加に伴い、推定法の精度も向上する。(2)入力波の卓越周波数帯域と配管の固有振動数の組み合わ せによって、推定精度変化するが、いずれの組み合わせにおいても、配管の応答が大きいとき、その精度は向上

研究成果の概要(英文):A method proposed for a one-input piping system having friction characteristics is applied to an elasto-plastic piping system receiving two inputs, a comparison between the obtained estimated value and an exact solution obtained by time history response analysis, and two input excitation experiments, and the following results were obtained (1) As the correlation coefficient of two inputs increases, the response reduction coefficient increases. As the correlation coefficient increases, the accuracy of the estimation method also improves. (2) Although the estimation accuracy varies depending on the combination of the dominant frequency band of the input wave and the natural frequency of the piping, its accuracy improves when the response of the piping is large in any combination. As the initial rigidity and the stiffness ratio after yield decrease, the response reduction coefficient increases and accordingly the accuracy of the estimation method improves.

研究分野: 機械力学

する。

キーワード: 配管系 耐震設計 弾塑性応答 非線形 バイリニア

1. 研究開始当初の背景

原子力プラントや化学石油プラント等の 産業施設内に設置される配管系は、地震時に 過大な動的応答を生じないように設計され なければならない. 配管系は一般に複雑な三 次元形状をしており,応答計算の簡略化を図 るために簡易応答計算法が開発される一方 で、計算技術の発展によってかなり複雑な配 管系に対しても応答計算ができるようにな ってきた.このように,配管系の応答計算法 が発展するに伴って, 配管系のサポート系の モデル化や応答特性についての関心が高ま ってきた.したがって、簡易応答計算法を確 立するためには次の問題点があげられる. 配 管系は機器・構造物あるいはハンガ、スナッ バなどのサポート機器などにより支持され ており、したがって、地震時には多点から加 振されることになり、多入力・多次元問題と して扱う必要がある. 上記のようなサポート 系と配管の間には、非線形復元力特性やガ タ・摩擦などの非線形性が存在しており、非 線形問題として扱う必要がある.前者に対し ては、多くの研究者により解析法や多入力応 答スペクトル法など設計手法が検討されて いる.一般的にはこの方法では、各入力から の最大応答量の加算に際し、二乗和平方根法 (SRSS法),または安全裕度をみて,絶対値 和法(ABS 法)を用いるが,これらの加算法 が多入力系の耐震設計の流れの中での位置 づけが確立されているとは言えない. また, 後者については, 地震時の非線形復元力特性 を考慮したサポート系や配管の動特性の解 明は,研究代表者らにより若干なされている. 例えば、最近では、等価線形化による摩擦応 答スペクトルの提案等が有るが、まだ不十分 と言える.まして,非線形特性を考慮した多 入力・多次元加算問題に対する影響の評価に ついては、全く検討されていない.

2. 研究の目的

本研究では、原子力プラントや化学石油プ ラントなどの配管系の地震による振動問題 を多入力・多次元問題とならびにガタや摩擦 などによる非線形問題と扱い,動的解析法, さらには設計のために最大応答量を合理的 に計算する手法を確立することを目的とす る.研究代表者は、耐震設計の多入力問題を 不規則荷重間の相関特性を導大した最大応 答の加算法を提案したおり,その加算法をも とに非線形性を考慮に入れた実用的な加算 法を新たに提案し,その適用性を解析的に解 明し,2入力1質点系の基本的なモデルや実 際の配管系モデルを用いた数値シミュレー ションと簡単な2入力非線形モデルを用い た実験によって検証する.

研究の方法

本研究では多入力非線形系の簡便な最大 加速度応答の推定式を提案するための基礎 研究として,異入力間の相関係数に着目し, それが多入力非線形系の応答に与える影響 を数値シミュレーションにより明らかにす る.検証のために,図1のような弾塑性特性 を有する2入力1質点系モデルを用いる.

図1 2入力1質点系モデル

なお. 弾塑性特性は、後述する, Bi-Linear 型復元力特性を想定し、その大きさは F_vとす る.まず、入力間の相関特性が、一般的な形 で与えられた場合,指数関数型の相互相関特 性を用いモンテカルロシミュレーションに より, 2入力加速度(ÿ,,ÿ,)を作成する. さら に, 配管系の入力は, その支持構造物系の振 動特性を反映したものであることを考慮し て、配管支持構造物系モデルとしてみなした 1 質点系 (ω_{si}, ζ_{si}) に同一の定常白色雑音・ 実地震波を通して得られた絶対加速度応答 波入力とした多入力非線形応答解析を行う. この研究では、実験室レベルでの加振実験、 すなわち,相関2入力を受ける弾塑性特性を 有する配管系モデルの応答特性を調べ,加算 法の検討を行う. 図2のように, 多入力配管 系を考え,実験では,弾塑性特性を有する配 管モデルを二つの電磁式加振機で加振を行 う. 弾塑性特性は、金属板の種類を変化させ て与える.

加振方向は,配管モデルに対して面外方向 であり,面外1次振動モードに着目する.配 管中央部と各々固定端に圧電式加速度計を 設置し,その点の加速度を測定する.

4. 研究成果

(1) 数値シミュレーション

構造物の復元力特性として弾塑性履歴を想定し、これを図3 に示すようなBi-Linear 型のモデルとする.本研究では降伏後の剛性 K_p と初期剛性の剛性 K_p の比をaとする.また、 x_y は降伏変位であり、Bi-Linear 型復元力特性を有する1自由度系の基礎に地震加速度 $\dot{x}_g(t)$ が入力された時の質点の運動を検討する.

図3 Bi-Linear 型復元力特性

次に、作成した互いに相関を持つ2つの入 力波を以下に示す. 作成した模擬地震波は配 管のモデルに入力し,地震応答解析を行うた め入力波の振幅レベルは異入力間の相関の度 合いに関わらず、一定であることが望まれる が、前述の通りモンテカルロシミュレーショ ンは乱数を基にしているので、試行毎に振幅 のレベルが変化してしまう.よって最初にパ ワースペクトル密度関数に従う1波) ÿ, を 作成し、この1 波に対して相関係数が $\epsilon = 0$, $\epsilon = 0.25, \epsilon = 0.50, \epsilon = 0.75, \epsilon = 1.0$ の波, ÿ2を作成する. つまり, ÿ1に対してÿ2を合計 5 波作成することになる. これにより ÿ, の入 カレベルは一定になるが, ÿ,に関しては条件 付確率密度関数を用いてガウス確率変数を抽 出するため、1回の試行では振幅に差が出て しまうため適切とはいえない. そこで本研究 では平均をとるため,相関係数が5個の波を 30セット作成し、計150波の入力波を作 成した.また、入力波形の振動数幅を示すパ ラメータ $\kappa = 10$ の場合と $\kappa = 100$ の場合の 2通りで150 波ずつ作成した. 作成した 波形の相互パワースペクトルと時刻歴波形の 例を図4に示す.また,1自由度系の初期剛 性から決まる固有周期 $T_0 = 2\pi (m/K_a)^{1/2}$,及び 粘性減衰の減衰比 $\zeta_0 = c/(2(m/K_e)^{1/2})$ はそれぞ $hT_0 = 1.0 \text{ s}, \zeta_0 = 0.01 \text{ とし, 復元力の降伏}$ 荷重F_vは、入力加速度の最大振幅の30波平 均値をx₀とした時に、次式により決定した

(mx₀/F_y= β=1.5).
作成した入力波を,弾塑性配管モデルに入力し,数値解析を行った結果を示す.初期剛

性 K_e に対する降伏後の剛性 K_p の比aを1.0 と1/50の2通りに設定した.図5に κ =10で, それぞれa= 1.0,1/50とした動的変位応答, 動的速度応答と動的加速度応答の解析結果を 示した.a=1.0の線形系の場合には、いずれ の波形にも振動中心のずれはないといえる. a=1/50の場合には、絶対絶対応答において、 振動中心が移動しており残留変形が残ってい る.この残留変形による吸収エネルギーによ って、動的速度応答と動的加速度応答が線形 系の場合より低減される.

作成した入力波を,弾塑性配管モデル(β = 1.5 とした)に入力し,数値解析を行った 結果を示す.初期剛性 K_e に対する降伏後の 剛性 K_p の比 $a \in 1.0 \geq 1/50 \circ 2$ 通りに設 定した.図6に a=1.0 で,それぞれ $\kappa=10$, $\kappa = 100$ とした加速度応答解析結果を示す. これらの図を見ると,相関係数を増加させる と最大加速度応答も線形的に増加している ことがわかる.これはa = 1.0,つまり塑性 変形しない条件のもと解析を行ったため,あ る程度線形的な結果が得られたと考えられ る.

図 7 に α = 1/50 で, それぞれ κ = 10, κ = 100 とした加速度応答解析結果を示した. これらの図を見ると,相関係数を増加させる と最大加速度応答も増加しているが, α = 1.0 の時よりばらつきが見て取れる.これは α =1/50,つまり塑性変形を考慮した条件の もと解析を行ったため,入力した 150 波のう

図7最大加速度と相関係数の関係

ち, 塑性変形したものとしなかったものが混 在していた.そのため, 最大加速度応答にば らつきが見られたと考えられる.

次に、初期剛性 K_a に対する降伏後の剛性 K_a の比 α が、多入力配管系における最大加速度 応答の変化に及ぼす影響を検討する.図8は $\kappa=10$ で、 α を横軸にとり、縦軸を最大加速 度応答を示した図である.相関係数が $\epsilon = 0$, $\epsilon = 0.25$, $\epsilon = 0.50$, $\epsilon = 0.75$, $\epsilon = 1.0$ の場 合である.この図を見ると,塑性特性におけ る第一勾配に対する第二勾配の比 a が減少 すると,最大加速度応答が小さくなっている ことが分かる.これは,塑性変形することに よって,振動エネルギーが塑性変形エネルギ ーへと吸収されるからである.

図8 最大加速度応答と相関係数の関係

(2) 2入力実験

2入力1質点系弾塑性モデルをもとに実 験装置を試作して実験を行い上記の解析結 果を確認する.本研究に用いる実験装置は以 下の条件を満たすものとする.

- (1)1自由度系であるとする.
- (2)線形時と非線形時の切り替えが容易で あること.
- (3) 塑性変形する素材を鉛とし、その塑性変形が目視で確認できること。
- (4)系の固有振動数が10Hz付近であること. 試作した実験装置の概観図を図9示す.

二つ並んだ円状のものが電磁式小型加振 器であり,それらに取り付けられた2枚の金 属平板が,L字型の錘につながっている.錘は 下のリニアガイドにつながっており,リニア ガイドの床にしっかりと固定されている.錘 はリニアガイド上をすべることになる.ただ し,線形系の場合として,アルミニウム板を 用いた.さらに,2入力にランダム加振を予 定であったが,小型加振器の特性により,ま ずは正弦波加振によって実験を行った.ただ し,2入力の相関係数はそれらの位相差を用 いた.

図10,図11に正弦波加振による位相差 と相関係数の関係と最大加速度応答と相関 係数を示す.横軸が位相差,縦軸が相関係数 を表す.この図から,ほぼ理論値(青線)と実験 値(赤線)が一致していることが分かる.横軸は 位相差,縦軸は最大加速度を表す.赤線がア ルミニウムと鉛の板,青線が両方ともアルミ ニウムの板を用いた.二つの入力波は正弦波 で,位相差だけを 0~180 まで 30°刻みで変 えた.位相差が小さくなる,すなわち相関係数 が大きくなる線形系[Al (アルミニウム) -Al] と次第に応答が大きくなるが,鉛板を用いた 赤線[Al-Pb(鉛)]鉛の塑性変形により応答が 低下している.図10と図11の結果を組み 合わせると,図12になる.横軸は相関係数,

図9 2入力加振実験装置

縦軸が最大加速度を表す.赤線がアルミニウ ムと鉛の板,青線が両方ともアルミニウムの 板を用いた場合である.相関係数が一定(約 0.0)を超えると鉛の塑性変形のエネルギー 研究者番号: 吸収によって応答が低減される.相関係数が 1のとき、低減効果が最大となり、応答は (3)連携研究者 38.78%低減されている. () 5. 主な発表論文等 研究者番号: (研究代表者、研究分担者及び連携研究者に は下線) (4)研究協力者 () 〔雑誌論文〕(計 件) 〔学会発表〕(計2件) ①塩見 卓也, 岡崎 嵐麻, 松田 知之, 三浦 奈々子, 曽根 彰, 多入力を受ける弾塑性 配管系の応答低減効果,日本機械学会 Dynamics & Design Conference2016 講演 論文集(山口大学), 2016, pp. 1-12 ②岡崎 嵐麻, 塩見 卓也, 松田 知之, 三浦 奈々子, 自根 彰, 多入力を受ける弾塑性 配管系の応答低減効果の実験による検証, 日本機械学会 Dynamics & Design Conference2016 講演論文集(山口大学), 2016, pp. 1-9 〔図書〕(計 件) 〔産業財産権〕 ○出願状況(計 件) 名称: 発明者: 権利者: 種類: 番号: 出願年月日: 国内外の別: ○取得状況(計 件) 名称: 発明者: 権利者: 種類: 番号: 取得年月日: 国内外の別: [その他] ホームページ等 6. 研究組織 (1)研究代表者 曽根 彰 (SONE Akira) 京都工芸繊維大学・機械工学系・教授 研究者番号:20197015 (2)研究分担者 ()