科学研究費助成事業

平成 29 年 5 月 1 4 日現在

研究成果報告書

機関番号: 10101 研究種目: 基盤研究(C)(一般) 研究期間: 2014~2016 課題番号: 26511001 研究課題名(和文)流域レベルの放射性セシウム動態予測モデルの構築

研究課題名(英文)Establishment of a watershed scale model predicting radiocesium redistribution.

研究代表者

波多野 隆介(Hatano, Rsyusuke)

北海道大学・農学研究院・教授

研究者番号:40156344

交付決定額(研究期間全体):(直接経費) 3,900,000円

研究成果の概要(和文):2011年3月11日に起こった福島第一原発事故後の放射性セシウム(Cs)の再分配を予測 するため、土壌から植物への放射性Cs移行が土壌の中カリウム(K)濃度、土壌の放射性Cs捕捉ポテンシャル (RIP)の関数として表したCsモデルを、USDAが開発したSWATモデルに組み込み、SWAT-Csを開発した。 Csモデルは水稲玄米の放射性Csの移行係数を良く再現することを確認した。SWAT-Csは、流量を良く再現した が、2015年の除染後は土壌の剥ぎ取りのためにパラメータを変える必要があった。一方、濁度、K、Csの突発的 な極大ピークを予測できず、河岸崩壊のような特異なプロセスが含まれていると思われた。

研究成果の概要(英文):To predict the redistribution of radio-cesium (Cs) deposited in a watershed with an accident at the Fukushima Daiichi Nuclear Power Plant on 11 March 2011, Soil Water Assessment Tool (SWAT) model developed by USDA was modified (SWAT-Cs). The SWAT-Cs was equipped the Cs module describing Cs transfer from soil to plant as a function of K concentration and radio-cesium interception potential (RIP).

The Cs module predicted well the measured Cs transfer coefficient of paddy brown rice.Performance of

SWAT-Cs for daily streamflow was satisfactory. However, due to removing surface soils during the decontamination in 2015, the parameters of SWAT-Cs should be changed after decontamination. On the other hand, SWAT-Cs performance for the stream loads of SS, K and Cs was not satisfactory. SWAT-Cs could not predict large episodic peaks of SS, K and Cs loads without increase of streamflow. This may be due to channel degradation associated with the abandonment of land managements after the accidents.

研究分野: 農学

キーワード: 放射性セシウム SWATモデル 放射性セシウム捕捉ポテンシャル 移行係数 流域 除染 流量 水田

1.研究開始当初の背景

2011 年 3 月 11 日の福島第一原発事故以来、 陸域生態系を汚染した降下放射性物質の行 末を明らかにする必要性が叫ばれてきた。と くに放射性セシウム(Cs)のうち Cs-137 は半 減期が長く(30.1 年)、土壌、植物、河川水の 汚染状況や除染の効果の長期監視が必要で あり(Nakao et al, 2014)、予測モデルはその 助けになる。

アメリカ農務省が開発した SWAT (Soil Water Assessment Tool)モデルは、地表水, 土壌粒子および化学物質の動態を流域スケ ールで予測する総合的な数値モデルである (Neitsch et al., 2005)。化学物質の一部は、 植物に吸収され、土壌中に残存したものが、 溶存態、懸濁態となって水の流出とともに、 下方、側方に移動し、河川へ流出する。しか し SWAT は、Cs のような陽イオンの動態を 記述するモジュールを持っていないため、そ の開発を行う必要がある。

植物の経根吸収は溶液を通して行われる。溶 液濃度を決める交換態は固定態へと徐々に 変化することから、ポイントは、放射性 Cs の交換態と溶存態の間の固液分配と、交換態 と固定態の間の分配にある。ただし、その分 配過程でカリウム(K)の増加は放射性 Cs の固 定量を低下させることが知られている (Absalom et al., 1999)。さらに、植物の Cs 吸収は K と拮抗し、K の増加は放射性 Cs の 吸収を抑制する効果があることが知られて いる。このために K の動態を同時に予測する 必要がある。

2.研究の目的

(1) 放射性 Cs の固定態、交換態、溶存態の分配と植物吸収について、K 濃度の影響を含めて記述する Cs モデルを開発する。

(2) Cs モデルを既存の SWAT モデルに組み込み、新たに SWAT-Cs モデルを開発する。

(3) 放射性物質により汚染され耕作放棄され た流域において、河川流量、懸濁物、K、放 射性 Cs 流出を実測し、SWAT-Cs のパラメー タを決定し流出予測を行う。

(4) Cs モデルを、異なる地域・土壌・施肥条 件で栽培された水稲玄米への放射性 Cs 移行 データに適用し、移行係数(玄米の放射性 Cs 濃度/土壌の放射性 Cs 濃度)を予測する 簡易モデルの開発を行う。

3.研究の方法

(1) Cs モデルの構築

Absalom et al. (1999)が提案した経験的方 程式に基づき、放射性 Cs の分配過程をモデ ル化した。土壌の交換性 K 含量、粘土含量及 び事故後の経過時間を記述する 8 つの式を Cs モジュールとして SWAT への組み込んだ。

(2) 観測サイトの概要

福島第一原発の北西約 30km に位置する飯 舘村南部の比曽川上部流域で観測を行った。 流域面積は 445 ha である。年間降水量 1361 mm yr⁻¹、年平均気温 10 で、月最高気温は 8 月の 27.3 、月最低気温は 2 月の-6.3 で ある。例年、12 月中旬から 4 月下旬にかけて 降雪が観測され、年間の平均積雪深度は 30 cm、年間積雪量は 189 cm である。

福島第一原子力発電所事故後、流域内のす べての農地は耕作放棄地となり、2015年の 除染による土壌の剥ぎ取りまで、野草に覆わ れた。

流域は事故発生前、落葉樹林(41%) 常緑 樹林(28%) 水田(11%) 牧草地(8%) 畑地(5%) 混合樹林(3%) 市街地(2%) 荒地(1%) 水域(1%)から構成されており、 流域内を流れる河川沿いおよび下流部に水 田が広がっている。主な土壌タイプは褐色森 林土(54%) 黒ボク土(24%) 細粒グライ 土(11%) 乾燥褐色森林土(10%) 灰色低 地土(1%)である。モデリング対象とした範 囲内の最高高度は791 m、最低高度は607 m であり、比較的平坦な流域である。

(3) 試料採取および観測

流域の末端で、流速、水位、濁度(FTU)を 10分毎に自動観測した。水位、河川形状およ び流速から河川流量を計算した。観測地点で は、月1回の頻度で平水時の水試料を採取し、 増水時の水試料は、自動採水装置で採取した。 この試料を用いて懸濁物(SS)、K濃度、溶存 態および懸濁態放射性 Cs 濃度を分析した。 懸濁物は水試料のろ過残渣量により求め、放 射性 Cs 濃度は、ゲルマニウム半導体検出器 (ウエル型)で分析した。

SS、K および放射性 Cs 濃度は、ともに濁 度 (FTU) と強い相関がみられた。R² はそれ ぞれ 0.876、0.928、0.780 であった。これら の回帰式と自動観測による実測値から、毎日 の SS、K および放射性 Cs 濃度を求め、流量 を掛けあわせて SS、K および放射性 Cs 負荷 量を求めた。

(4) SWAT モデルの適用の手順

図1にSWAT モデルの構造およびモデリン グの手順を示す。予測に用いた SWAT モデル は、物理学的なプロセスに基づいた分布型水 文モデルである。インプットデータは ArcGIS インターフェースにより体系化され、 気象データ、地形情報、土地利用、土壌デー 夕等が含まれる。流域スケールのモデリング が可能であり、流域全体はまず、地形や流路 を基にサブ流域に分割される。各サブ流域は、 さらに土地利用、土壌タイプ、傾斜の組み合 わせによって水理学的反応単位(hydrologic response unit, HRU) に分けられる。HRU は最小の空間分割単位である。本研究ではア ウトプットとして河川流量、SS 流出、K 流 出、Cs 流出をアウトプット値として出力し、 1日毎で実測値との比較を行った。各アウト プットについて、パラメータ値の校正はマニ ュアルおよびオートの二手法で行い、後者に

は SWAT の感度解析、校正工程を簡略化した ソフト、SWAT-CUP を用いた。キャリブレ ーションにはパラメータの特性に応じて3つ の手法がある。1 は校正値と初期値を単純に 置き換える手法。2 は校正値を初期値に足す ことで適正値を求める手法、3 は校正値を掛 け算することで適正値を求める手法である。

図1 SWAT モデルの構造と適用の手順

(5) モデル評価

実測値を有する期間を校正期間、検証期間 に分けてシミュレーションを行い、それぞれ について統計的指標を用いた精度評価を行 った。2008年から2012年までの5年間をパ ラメータ初期値調整期間、実測値を有する 2013年を校正期間、2014年を検証期間とし、 日ごとの予測を行った。流域内の土地利用の うち、水田、牧草地、畑地は、事故後、自然 草地となったと設定した。採用した統計的指 標は、決定係数(R²)、Nash-Sutcliffe 係数 (ENS)およびパーセントバイアス(PBIAS)の 3 種類である。R² は実測値と推定値の直線的 相関の強度を、ENS は 1:1 の関係の強度を示 し、いずれも 0.5 以上が望ましいとされる (Santhi et al., 2001)。PBIAS は実測値と比較 した推定値の平均的傾向を示し、正で過小評 価、負で過大評価、絶対値が小さいほど精度 が高く (Gupta et al., 1999)、月単位の SS シ ミュレーションの場合、±30 < PBIAS < ± 55 で良好とされる(Moriasi et al., 2007)。実 測値と推定値の相関強度を示す前述2つの 統計値と合わせ、過大・過小といった総合的 な傾向を示すために用いられることが多い。

(6) SWAT モデルへの入力データ

SWAT は独自のデータベースを有し、最低 限必要とする入力データは、GIS データであ る地形情報、土地利用、土壌タイプである。 本研究ではさらに、気象データ(降水量、気 温、相対湿度、風速、太陽放射)、現地調査 に基づく土壌物理性(粒径組成、飽和透水係 数、有効水分量、容積重、土壌深度)および 河川形状をデータベースに書き込むことに よりモデルの精緻化を図った。

土壌および植物体中の K、Cs の初期濃度 は、流域内で採取した土壌の分析値から決定 した。事故以前は作付けに伴い農地に K 施与 が行われたとして、現地で推奨される値を与 えた。岩石の風化により放出される K 量も与 えた。 放射性 Cs の動態に関する経験定数は Absalom et al., (1999)を参照した。

(7) 除染の影響調査

2015 年以降、流域では除染が始まった。 これは、表土5 cm を剥ぎ取り、フレコンバ ックにつめ、流域の一箇所に集積するもので ある。事故後、農地は野草で覆われていたが、 除染により野草はなくなり土壌表面が直接 現れ、フレコンバック置き場は、市街地と似 た状況を作り出した。この除染の影響が河川 流量に与える影響を見るため、SWAT に、 2013 年の実測値により校正したパラメータ を用いて2015年と2016年の流量を検証した 結果と、2015 年の実測値による校正により、 2016 年の流量を検証した結果を比較した。

2015年以降の除染作業により水田、牧草 地、畑地は、土壌が剥ぎ取られ荒地になった と設定した。さらに、除染作業によりフレコ ンバッグが積み立てられた土地を市街地と 設定した。結果として土地利用の内訳は、落 葉樹林(41%)常緑樹林(28%)荒地(23%) 市街地(4%) 混合樹林(3%)、水域(1%) となった。また、除染作業の影響を反映させ た土壌タイプデータでは、土壌の剥ぎ取りが なされた土地の土壌第一層が取り除かれた と設定した。

(8) Cs モデルの移行係数を水稲玄米に適用す るため、モデル改良とパラメータ校正を行っ た。土壌による RIP の大きな違いを考慮でき るように、放射性 Cs の固液分配係数(Kd) を算出するモデル式を改良した。また、農地 に施用される様々な K 肥料及び K 含有資材 (塩化 K、ケイ酸 K、堆肥、粘土鉱物資材) による交換性 K 含量増大効果の違いを評価 できるような肥料・資材別の経験的係数をモ デル内に採り入れた。改良 Cs 移行係数モデ ルを水稲玄米(2011~2012 年に福島県及び北 関東で実施された圃場試験の文献データに 基づく)に適用し、モデル内の各種パラメー タ(土壌特性、作物特性及び時間による減衰 傾向を表現するパラメータ群)を校正した。

4.研究成果

(1) 河川流量予測

SWAT モデルはピークの位置、高さともに 実測値を良く再現した(図2),推定値と実測 値間の R²および ENS は、校正期間(2013)で

図2 河川流量のモデル推定値と実測値の 比較および降水量の経時変化

それぞれ 0.69、0.66、検証期間(2014)でそれ ぞれ 0.74、0.57 であり、どの統計値も基準値 (0.5)を上回った。また、PBIAS は校正期間で -4.72%、検証期間で-4.49%と十分に小さい値 を示した。このように、SWAT モデルは河川 流量を精度よく予測した。

(2) SS 流出

SWAT モデルは 2013/7/27 - 2013/8/10 (term1), 2014/7/10 - 2014/7/27 (term2), 2014/8/16 - 2014/8/23 (term3)の夏期の3期 間において、顕著な過小評価が確認された (図3)。全てのピークを対象とした場合、推 定値と実測値間の R² および E_{NS} は、校正期 間(2013)でそれぞれ 0.32、0.30、検証期間で それぞれ 0.36、0.34 であり、全期間において 統計値が基準値(0.5)を下回り、PBIAS は校正 期間で 55.2%、検証期間で 35.7%となり、顕 著な過小評価の傾向が見られた。一方、この 3 期間を除外した場合、推定値と実測値間の R² および E_{NS} は、校正期間(2013)でそれぞれ 0.89、0.88、検証期間でそれぞれ 0.62、0.59 と顕著に上昇し、さらに、PBIAS は校正期間 で-2.1%、検証期間で-9.9%と過小評価も解消 された。除外した3つの極大ピークの共通点 として、ピーク直前に、中小規模の降水が続 く期間が確認できた。

(3) K 流出

SS 流出と同様、K 流出にも極大ピークが見 られた(図4)。 全データでは、 推定値と実測 値間の R² および E_{NS} は、校正期間(2013)で それぞれ 0.46、0.44、検証期間でそれぞれ 0.42、0.39 であり、いずれも精度として不十 分であった。PBIAS は校正期間で 16.3%、検 証期間で 19.3%と、過小評価と算出された。 そこで SS 流出と同様、極大ピークの期間を 除外したところ、推定値と実測値間の R² お よび ENSは、校正期間(2013)でそれぞれ0.67、 0.60、検証期間でそれぞれ 0.63、0.63 であり、 両期間、両統計値において基準(0.5)を満たし た。PBIAS は校正期間で 0.73%、検証期間で 1.64%であり、全体の傾向としても大きく精 度が改善された。モデル精度が SS 流出と同 じ傾向を持つことは、極大ピーク時の K 流出 も懸濁態の占める割合が大きいことを示唆 している。またこの結果は、極大ピーク時以 外の基底流量時や通常降雨時については精 度よくシミュレーションが行えていること を示している。

(4) Cs 流出

SS、K 流出と同様、極大ピークが見られた (図5)。推定値と実測値間の R² および E_{NS} は、校正期間(2013)でそれぞれ 0.40、0.33、 検証期間でそれぞれ 0.46、0.42 であり、いず れも基準値を下回りモデル精度が低かった。 PBIAS は校正期間で 52.6%、検証期間で 34.3%と算出され、顕著に過小評価であった。 極大ピークを除いた場合、推定値と実測値間

図 3 SS 流出のモデル推定値と実測値の 比較および降水量の経時変化

図4 K 流出のモデル推定値と実測値の比 較および降水量の経時変化

図 5 Cs 流出のモデル推定値と実測値の 比較および降水量の経時変化

図6 事故前の土地利用図(左)と除染後 の土地利用図(右)

表1 事故後の2013年を校正期間とし、 除染時の2015年、除染後の2016年を検 証した時の流出予測精度

	R ²	ENS	PBIAS(%)	
2013	0.74	0.63	-14.10	
2014	0 .65	0.64	2.42	
2015	0 .82	-0.91	-33 20	
2016	0.93	0.84	-24.67	
*2013を校正、2014-2016年を検証				

表 2 除染時の 2015 年を校正期間とし、 2016 年を検証した時の流出予測精度

	R ²	ENS	PBIAS(%)	
2015	0.78	0.77	-4 .60	
2016	88. 0	0.73	-13.70	
*2015を校正、2016年を検証				

の R² および E_{NS} は、校正期間(2013)でそれ ぞれ 0.83、0.78、検証期間でそれぞれ 0.65、 0.63 と SS、K 流出と同様に精度は向上した。 PBIAS は校正期間で 14.1%、検証期間で 6.1%となり、全体として実測値に大きく近づ いた。Cs はその大部分が懸濁態として存在す ることが知られており、SWAT によるシミュ レーション結果からもSS 流出とCs 流出が挙 動を共にしていることが示唆された。

(5) 除染が流出に及ぼす影響

2015 年に除染により表土が剥ぎ取られ、荒 れ地が大きく拡大するとともに、汚染土壌を つめたフレコンバックが河川近傍に積まれ た(図 6)。汚染後の農地は自然草地として、 2013 年を校正期間、2014 年から 2016 年を 検証期間として流出予測を行ったところ、 2013年、2014年、2016年の河川流量シミュ レーションは R²、ENS ともに 0.5 以上であ ったが、2015 年の ENS が-0.91 と著しく低 下し、2015 年から行われた除染作業の影響 が顕著に現れた(表1)。除染による表土の剥 ぎ取りによる、土地利用変化、土壌変化を与 えて、2015 年を校正期間、2013 年、2014 年、2016 年を検証期間として、流出予測を 行ったところ、2015年、2016年ともに精度 良く予測できた(表 2)。除染作業による土壌 の剥ぎ取りや土地利用変化は明らかに流出 へ影響をおよぼしていた。

(6) 改良 Cs 移行係数モデルの水稲玄米への 適用

モデルは移行係数の2桁以上の違いを十分に (決定係数 $R^2 = 0.87$)説明することが出来た (図7)。さらに、土壌の放射性Cs濃度を用い て水稲玄米の放射性Cs濃度を推定したとこ ろ高い適合性($R^2 = 0.91$)が得られた。福島 県内の農地については、RIPと交換性K含量 の実測データが広域でデータベース化され ており、改良Cs移行係数モデルを用いれば、 土壌・施肥条件が大きく異なる広域を対象に、 適切なK施肥量を提示するようなシナリオ 分析が実施可能である。

図 7 改良 Cs 移行係数モデルによる水稲 玄米の移行係数(TF)予測値と実測値(文 献データ)の関係

Absalom JP, Young SD, Crout NMJ, Nisbet AF, Woodman RFM, Smolders E, Gillett AG. 1999. Predicting soil to plant transfer of radiocesium using soil characteristics. Environmental science & technology, 33(8), 1218-1223.

Gupta, H. V., S. Sorooshian, and P. O. Yapo. 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrologic Eng. 4(2): 135-143.

Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R., Veith, T. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885-900.

Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models. Part 1: a discussion of principles. J Hydrol. 10, 282-290.

Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW. 2005. Soil and water assessment tool. Theoretical documentation: Version 2005. TWRI TR-191. College Station, Texas: Texas Water Resources Institute. 476p.

Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc. 37(5), 1169-1188.

5.主な発表論文等

[雑誌論文](計3件) 江口定夫、農業環境中における放射性セ シウムの挙動、土壌の物理性、査読有、 vol. 135、2017、pp. 9-23 Wang CY, Boithiasc L, Ningd Z, Hana Y, S, Sánchez-Péreze Sauvagee TM. Kuramochi K, Hatano R, Comparison of Langmuir and Freundlich adsorption equations within the SWAT-K model for assessing potassium environmental losses at basin scale. Agricultural Water Management, 査読有、vol. 180, 2017, pp. 205-211. DOI: 10.1016/j.agwat.2016.08.001 Wang, CY, Jiang, R, Boithias, L. Sauvage, S, Sanchez-Perez, JM, Mao, XM, Han, YP, Hayakawa, A, Kuramochi, K, <u>Hatano, R</u>: Assessing potassium environmental losses from a dairy farming watershed with the modified SWAT model. Agricultural Water Management, 查読有, vol. 175, 2016, pp. 91-104, DOI: 10.1016/j.agwat.2016.02.007

[学会発表](計13件)

<u>江口定夫</u>、農業環境中における放射性セ シウムの挙動、土壌物理学会シンポジウ ム、2016 年 10 月 29 日、京都大学(京都 府・京都市)

亀井大輝、小倉加世子、Wang Chunying、 江口定夫、神山和則、山口紀子、倉持寛 太、波多野隆介、SWAT モデルを用いたカ ーブナンバー法とグリーンアンプト法に よる小規模流域の土砂流出量の推定、日 本土壤肥料学会 2016 年度佐賀大会、2016 年9月22日、佐賀大学(佐賀県·佐賀市) 江口定夫、水田における放射性セシウム の動態とモデル化、日本土壌肥料学会 2016年度佐賀大会シンポジウム、2016年 9月22日、佐賀大学(佐賀県・佐賀市) 山口紀子、農耕地土壌における放射性 Cs の動態にかかわる有機物の役割、日本土 壌肥料学会 2016 年度佐賀大会シンポジ ウム、2016年9月22日、佐賀大学(佐 賀県・佐賀市)

<u>Noriko Yamaguchi</u>, Toshihiro Kogure. Characterization of radiocesium bearing microparticles deposited and resuspended in Fukushima, Goldschmidt conference, 2016 年 6 月 30 日, パシフ ィック横浜(神奈川県・横浜市)

<u>Hatano, R.</u>, Some aspects in development and application of radiocesium simulation model using SWAT. MARCO Satellite International Workshop 2015、 - Adoption and adaptation of SWAT for Asian crop production systems and water resource issues -、 2015 年 10 月 22 日、筑波農 林研究交流センター(茨城県・つくば市) 波多野隆介、流域レベルの放射性セシウ ム動態予測モデルの開発・適用・問題点、 農業生態系における放射性セシウムの吸 着・固定化 可給化メカニズムの解明に 向けたワークショップ、2015年10月13 日、コラッセふくしま(福島県・福島市) 江口定夫, 吉川省子, 板橋直, 井倉将人, 神山和則,平舘俊太郎,楠本良延,德岡 良則,木方展治,藤原英司,山口紀子, 大越聡, 倉持寛大, 波多野隆介、福島県 内の不作付け農地及び農業流域からの放 射性セシウムの流出実態、日本土壌肥料 学会 2015 年度京都大会、2015 年 9 月 9 ~11日、京都大学(京都府・京都市) 山口紀子, 中尾淳, 武田晃, 塚田祥文, 江口定夫、平舘俊太郎、放射性セシウム 捕捉ポテンシャル(RIP)のセシウム濃度 依存性,日本土壤肥料学会 2015 年度京 都大会, 2015年9月9~11日, 京都大学 (京都府・京都市) 小倉加世子、Wang Chunying、江口定夫、

神山和則、<u>山口紀子</u>、倉持寛太、<u>波多野</u> <u>隆介</u>、福島県の不作付け農業流域におけ る放射性セシウム動態予測のためのSWAT

モデルの適用 - 小流域への適用に関する 問題点 - 、日本土壌肥料学会 2015 年度京 都大会、2015年9月9~11日、京都大学 (京都府・京都市) Kayoko Ogura, Wang Chunying, Sadao Eguchi, Kazunori Kohyama, Noriko Yamaguchi, Kanta Kuramochi, <u>Ryusuke</u> Hatano, Application of SWAT model to predict the material dynamics in an agricultural watershed. 13th International Conference on the Biogeochemistry of Trace Elements, ICOBTE 2015 FUKUOKA, 2015 年 7 月 12~ 16日、福岡国際会議場(福岡県·福岡市) S. Eguchi, N. Yamaguchi, K. Kohyama, I. Short Taniyama, to long-term prediction of radiocesium transfer factors for paddv rice. 13th International Conference on the Biogeochemistry of Trace Elements, ICOBTE 2015 FUKUOKA, 2015 年 7 月 12~ 16日,福岡国際会議場(福岡県·福岡市) N. Yamaguchi, H. Tsukada, K. Kohyama. Y. Takata, I. Taniyama, Radiocesium behavior in Japanese soils, 13th International Conference on the Biogeochemistry of Trace Elements, ICOBTE 2015 FUKUOKA, 2015 年 7 月 12~ 16日, 福岡国際会議場(福岡県·福岡市)

〔図書〕(計0件)

〔産業財産権〕

出願状況(計0件)

取得状況(計0件)

〔その他〕

なし

- 6 . 研究組織
- (1)研究代表者
 波多野 隆介(HATANO, Ryusuke)
 北海道大学・大学院農学研究院・教授
 研究者番号:40156344

(2)研究分担者

江口 定夫(EGUCHI, Sadao)
 農業・食品産業技術総合研究機構(農研機構)
 構)
 農業環境変動研究センター物質循環研究領域・ユニット長
 研究者番号: 30354020

山口紀子(YAMAGUCHI, Noriko) 農研機構農業環境変動研究センター有害 化学物質研究領域・上級研究員 研究者番号: 80345090