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Conformal algebras have finitely many products which are parametrized by
natural numbers. In this project we prove the equivalence of categories between the category of
conformal algebras and the category of Lie algebra. Therefore, we can define the notion of conformal

algebras by a single product called the Lie bracket. (The definition of conformal algebras are very
complicated because of infinitely many products.) To prove the equivalence of categories we
introduced the notion of quasi-primitive projection which are used to define a Lie bracket on the
space of quasi-primitive elements. In pour proof of the equivalence of categories, we found many
identities on polynomial functions in four indeterminate, which will be applied to other areas of
mathematics.
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