科学研究費助成事業 研究成果報告書 平成 28 年 6 月 21 日現在 機関番号: 13601 研究種目: 挑戦的萌芽研究 研究期間: 2014~2015 課題番号: 26620026 研究課題名(和文)有機 無機複合 L B 法を用いる自立型ナノ光電荷分離膜の作製 研究課題名(英文)Self-standing nano-film for photoinduced charge separation fabricated by organic-inorganic hybrid Langmuir-Blodgett method 研究代表者 宇佐美 久尚(USAMI, Hisanao) 信州大学・学術研究院繊維学系・教授 研究者番号:60242674 交付決定額(研究期間全体):(直接経費) 3,000,000円 研究成果の概要(和文):本研究では、Langmuir-Blodgett法を改良した湿式製膜法により、温和な条件で酸化チタン、酸化鉄および酸化マンガンのナノ薄膜を作製した。この手法では、単分子層を構成単位としてナノスケールの膜厚制御が可能であり、多様な金属酸化物のナノ薄膜を任意の順序で積層できる点に特徴がある。得られた膜は表面粗さ数mの平滑性を持ち、伝導帯と価電子帯のエネルギー準位は概ねバルク体と同等であることを明らかにした。膜の表裏を酸化還元反応に供する自立ナノフィルムは得られなかったが、多段光触媒系を構築する一指針となると考えられる。 研究成果の概要(英文): We have investigated a modified Langmuir-Blodgett process, a wet layering procedure under a mild condition, for fabrication of nano-films of titanium oxide, iron oxide and manganese oxide in this research project. A hybrid monolayer of ionic amphiphiles and metal ions or oxometallates was fabricated and transferred on solid substrates, such as silicon wafer, fluorine doped tin oxide. The thickness of the films can be successfully controlled with accuracy in the order of nm. The raw film was calcined to metal oxide nano-films. Surface roughness of the film deposited on Si wafers was estimated as much as several nm. According to absorption spectra and photocurrent through the metal oxide film, energy level of the conduction band edge of the film was estimated. Though fabrication of a self-standing film of the metal oxide film was unsuccessful, the results suggest a strategy to fabricate a robust nano-films for efficient charge separation to redox reaction site. 研究分野: 光化学 キーワード: 光誘起電子移動 Langmuir-Blodgett膜 電子移動 酸化物半導体 光電流 電荷分離 酸化チタン #### 1.研究開始当初の背景 光誘起電子移動における電荷の分離と蓄積は、光合成や光触媒反応の効率を左右する要件である。これらの効率を高めるためには、エネルギー準位順の分子配列や半導体のバンド準位の曲がりが有効であることが植物の光合成や光触媒、色素増感太陽電池の例で明らかにされている。また、半導体の伝導帯や価電子帯は複数の電子や正孔を蓄積できるため、同一エネルギー準位の電子が同時に必要となる多電子移動過程にも適用できる。 さらに、二種類の可視光応答型光触媒を連 動させた二段階励起の光触媒反応系が、適切 な電荷移動媒体を用いた系で実現されてい る。しかし、電荷再結合を起し難い電荷移動 媒体と半導体の組み合わせは限定的である。 また、酸化チタン表面に別の半導体をグラフ トすると、その界面で伝導帯および価電子帯 の不連続的な段差をそれぞれ生じ、バルク半 導体から表面にグラフトした半導体へ電子 移動して電荷分離が起こる。この原理を利用 して微粒子状の半導体表面において数 nm ス ケールで電荷を分離することにより、反応活 性が高まることが明らかにされている。積層 する半導体の種類を増やして多段過程とす ると一層効果的な電荷分離が期待されるが、 光触媒に用いられる半導体の抵抗率が大き いため実証はされていない。抵抗率は物質固 有の値であることを考慮すると、電荷の移動 距離を短くできるナノスケールの超薄膜の 表裏面を利用することが望ましいが、膜強度 が十分ではないため、このような系の報告例 はない。 #### 2.研究の目的 二種類の半導体ナノ薄膜を積層し、バンド端の不連続な界面を形成することにより、電荷分離の促進効果を検討する。構成する半導体性物質として資源量が豊富な第4周期の金属酸化物から好適な組み合わせを探索する。 半導体中の電荷再結合を抑制するためには結晶性が高い材料が好ましいが、単結晶材料を積層する場合には界面における結晶形と格子定数のマッチングが必要となる。この相反する条件を満たす材料として、本研究では微結晶ナノ薄膜を任意の膜厚、サブナノメートルオーダーの精度、かつ任意の順序で製膜可能な汎用の製膜法の開発を目指した。 また、生成物の分離と逆反応を抑制するため、ホールと電子を表裏面に分離して、相応の強度を持つ自立膜が好ましい。一方、酸化物半導体層を経由する電子移動速度を高めるためには層の抵抗を低下させたいが、抵抗率は物質固有の値であるので、実質的な電影化が必要である。これらの特性を兼備したナノメートルスケールの厚さの自立膜は現在のところ報告例が無い。本研究では、ナノスケールの細孔径を持つ支持網表面にナノスケールの細孔径を持つ支持網表面にナノ 積層膜を形成し、自立型のナノ積層膜を創成し、層を経由する光電子移動を観測することを目指した。 #### 3.研究の方法 任意の順序でナノ薄膜を作製できる汎用の手法として、Langmuir-Blodgett (LB)法を検討した。これは、水溶液の表面に両親媒性分子の単分子膜を形成し、水面上で緻密に整形しながら固体基板上に掬い取る製膜法である。単分子膜を単位として製膜するため、緻密で規則性の高い多層膜を、任意の積層順で製膜できる点に特徴がある。長鎖アルキルカルボン酸と二価の銅やカドミウムイオンとの金属石鹸を用いると、安定な LB 膜を形成することが Langmuir の時代から知られていた。 図 1 有機両親媒性イオンと無機イオン を複合化した複合 LB 膜の製膜プロセス 鉄(III)アクアイオンは陽イオンであるため、対となる有機両親媒性イオンとしてステアリン酸を用いた。一方、チタン錯体イオンは陰イオンであるため、有機両親媒性イオン対となる長鎖アルキルアンモニウムイオンを用いた。得られた複合多層膜を焼成することにより、相当する酸化物ナノ薄膜を形成した。 表面圧—占有面積 (π-A) 等温線に基づいて緻密で平滑なナノ薄膜を形成する製膜条件を最適化した。固体基板上に形成したナノ薄膜の表面形状は原子間力顕微鏡 (AFM)で観測した。さらに、積層に伴う膜の吸収スペクトル変化を測定し、各層が均質に製膜され ていることをその場観察した。積層膜の規則的な層状構造を X 線回折から評価した。これらの製膜過程は、製膜条件を適切に選択することにより、ソーダガラス、ホウケイ酸ガラス、石英ガラス、フッ素ドープ酸化スズ電極 (FTO)、すずドープインジウム電極 (ITO) およびシリコンウエハ基板にも適用できることを明らかにした。FTO 電極表面に製膜した半導体膜を作用極として交流インピーダンスを測定し、得られた膜の静電容量からMott-Schottky 解析を行い、伝導帯下端の準位を求めた。 この方法はバルク半導体の空乏層(厚さ約 数百 nm) に蓄積される電荷量に基づいてお り、膜厚が数 nm の半導体ナノ薄膜に適用す ることの是非が問題となる。そこで、本研究 では、空乏層の存在に依存しないバンド準位 の測定法として、光電流の電位依存性を測定 した。n 型半導体の伝導帯に光励起された電 子を背面電極から取り出した電流を光電流 として測定する。背面電極の電位が伝導帯の 下端電位よりも貴に掃引すると光電流が流 れ始める。図2に示す装置を用いて、FTO電 極基板に製膜したナノ薄膜を作用極として 光電流を測定すると、伝導帯準位の下端を立 ち上がり電位としてアノーディックな光電 流が観測された。半導体層の厚さは極めて薄 いため吸光度が小さく、観測される光電流も 小さいので、光チョッパで断続光を照射しな がらロックインアンプで増幅し、作用極への 印加電位に対して位相差に注意しながら光 電流値をプロットすると、立ち上がり電位と して伝導帯の下端電位が求めた。 図 2 光電流測定装置の模式図 # 4.研究成果 # (1)酸化チタンナノ薄膜の製膜と物性 チタン錯体イオンの水溶液をガラス基板 又は FTO 電極基板にスピンコートして焼成 することにより、バルク酸化チタンの試料と して厚膜型の酸化チタン薄膜を作製した。得 られた膜の XRD 解析を測定すると微弱に にながらアナターゼ型酸化チタンに帰属で きる回折ピークが観測された。この複合膜は 長鎖アルキル鎖が膜厚方向の構造の大半を 占めるため、焼成時に両親媒性の長鎖アルキ ルアンモニウム部が二酸化炭素等として消 失するため、焼成膜の層状の規則性が顕著に 表れ難いと考えられる。 焼成後の酸化チタンナノ薄膜の交流イン ピーダンス測定により、得られた膜は n 型半 導体であり、この膜の伝導帯準位は-0.8 V vs. Ag/AgCl と求められた。この値は、光電流法 で測定した値とも一致した。未焼成膜では、 有意の光電流は観測されなかったことから、 孤立したチタン錯体イオンが焼成により初 めて酸化チタンとなることが確認された。酸 化チタンの前駆体として塩化物やアルコキ シドが一般に用いられるが、これらは中性水 溶液中で急激に加水分解・脱水縮合されて酸 化チタン凝集体を生ずるので、ナノ薄膜の生 成には適さない。そこで、本研究では、水溶 液中でも広い pH 領域にわたり安定な前駆体 として、垣花らにより報告されたチタン錯体 を選択した。 このチタン錯体の水溶液表面に、長鎖アル キルアンモニウムを展開した。チタン錯体は ニ核錯体で4価の陰イオンであるため、4分 子のアンモニウムイオンが静電的に結合で きる計算となる。水面上に展開したアンモニ ウムイオン一分子あたりの占有面積(A)に 対して表面圧(π)をプロットした π -A 等温線 から得られる極限面積は 0.45 nm² であり、チ タン錯体 1 分子あたり 2.5 個の長鎖アルキル アンモニウムが結合していることが分かっ た。残りの負電荷はプロトンなどで保障され ていると考えられる。界面で形成されるイオ ン対は水に不溶性であるため、2.5 分子の長 鎖アルキルイオンとの塩形成により、疎水性 で安定な複合単分子膜を形成したと考えら れる。チタン錯体のイオンのサイズを考慮す ると、単分子膜中ではチタンの密度が高くな り、焼成後も収縮率が少なく緻密な酸化チタ ン薄膜を生成することが期待された。焼成膜 の透過吸収スペクトルはバンドギャップに 起因する吸収帯が約 400 nm 以下に観測され たことから、この酸化チタン薄膜のバンドギ ャップは 3.1 eV と求められた。 シリコンウエハ表面に作製した膜の表面形状を AFM にて観察すると、薄片状の結晶が分散した一辺 $1~\mu m$ の観察領域の最大表面粗さは約 3~nm となり、スピンコートにより作製した膜よりも平滑な表面構造が得られた。 透明導電膜の表面に製膜した膜を作用極として光電流を測定し、光電流が流れ始める電位から伝導帯下端のエネルギー準位を見積もった。一層膜では感度不足のため検知できなかったが、5層膜では-0.8 V vs Ag/AgClに伝導帯準位の下端が存在することが明らかとなった。この値は上記のスピンコート膜の値と同等であり、バンドギャップも概ノラーの値と同等であることから、本研究で製膜したナールは、積層方向の膜厚が十分に小りとも面内のサイズがμmオーダーの薄片状結晶から構成される膜を形成するので、バルクと同等のバンド構造を持つと考えられる。 また焼成温度が 200 の場合においても、光電流の値は小さいが立ち上がり電位が等しいことから、バンドギャップと伝導帯下端の準位は、いずれも 400 焼成と同等の値を取ることが分かった。このことは、耐熱性の高いルテニウム (II) 錯体と複合化すれば、励起色素からの増感光電流を受容可能な積層膜を一回の製膜過程で形成できることを考慮をしている。後続の酸化還元反応を考慮するの批放反応の効率を高めるためには膜の抵抗を低減させることが好ましく、緻密で明確な伝導体準位を持つ半導体ナノ薄膜が必要となろう。 酸化物半導体のバンド準位は表面水酸基の解離のためpHに依存することが知られている。ナノ薄膜でもネルンストの式に従って、低pHでは貴に、高pHでは卑にシフトした。同様の効果は、アセトニトリル中のLi[†]イオンの満度に対しても観測された。Li[†]イオンの特に、酸化物半導体表面の水酸基の解離に影響することが確認された。一方、イオン名に対しては影響されなかった。これらの結果は対しては影響されなかった。これらの結果は、観測されたエネルギー準位が酸化チタンの濃膜の伝導帯準位の下端を反映している。とを支持している。 ### (2)酸化鉄ナノ薄膜の製膜と物性評価 電子媒介能を有する酸化物半導体として、 水相中の塩化鉄(III)イオンを前駆体として 酸化鉄ナノ薄膜を作製し、膜の構造と光電気 化学特性を評価した。 塩化鉄(III)水溶液上にステアリン酸を展開すると静電的に複合化した単分子膜を形成した。極限面積が最小となり緻密膜を形成する pH 条件は 4.5 であった。この結果は、ステアリン酸の解離度と下層液の鉄イオンの水和構造を考慮すると説明できる。 この条件でシリコンウエ八上に積層膜を製膜し、膜の表面形状をAFMにて観察した。得られた画像から表面粗さを評価すると、一辺 $1 \mu m$ の観察領域で平均高低差が $1.5 \mu c$ なる平滑な膜が得られた。ところが、この膜を焼成すると、最大高低差 $10 \mu c$ 加加の粒子が形成された。有機層の消失により膜が収縮したためと考えられる。 ステアリン酸 鉄(III)イオン対の複合多層膜をガラス基板上に作製し、積層に伴う吸収スペクトルの変化を測定した。積層数に高端をであり、極大関であり、極大関であり、一般では、一致したことが多、FeCl3溶液のスペクトル形状は塩化鉄(III)に一致したことから、FeCl3溶液のスペクトル形状は塩化鉄(III)に一致したことから、FeCl3溶液のスペクトル形状は塩化鉄(III)に一致したことから、好質な累積に増加したことから、均質な累積が確認できた。この多層膜の XRD 回折からは高次ピークが観測され、この SA-Fe 膜はファリン酸の二分子を構造単位とする Y 型 構造の膜であることが分かった。しかし、 400 で 2 時間焼成することにより、この規 則構造は失われた。 表面構成元素を XPS で同定すると、未焼成および焼成膜に鉄の 2p 軌道に由来するピークが観測され、また XAFS スペクトルの比較からナノクラスター状の Fe₂O₃ と同定された。焼成膜の紫外可視吸収スペクトルからエネルギーギャップを求めると、直接遷移で2.90 eV、間接遷移で1.90 eV と求められた。文献値と比べると0.2 eV 拡張したことから、量子サイズ効果の影響が示唆された。 FTO 電極表面に形成した薄膜では約-0.2 V vs Ag/AgCl からアノーディック光電流が観測された。この準位は Mott-Scottky プロットから求めた伝導帯準位とも一致したことから、得られた酸化鉄薄膜が、この準位に伝導帯を持つ n 型半導体であることが明らかとなった。この膜の光電流のアクションスペクトルは、焼成膜の吸収スペクトルの波形と一致し、光電流の活性種は酸化鉄であることが分かった。 # (3)今後の研究展望 本研究で開発した酸化チタンナノ薄膜を 光誘起電子移動系への応用研究を進めている。新学術領域研究(人工光合成)における 共同研究として、本研究で開発した酸化チタンナノ薄膜の表面に増感色素のナノ組織化 を担持し、励起色素からの増感光電流を観視した。色素から半導体層への一段階光電器・ した。色素から半導体層への一段階光電影に が望まれたが、後続する電子移動とと が望まれる。膜の表裏面を利用する光化製膜が望まれる。膜の表裏面を利用する光化製膜を試みてきたが、原の強度が不十分であり現 段階では未達成である。 また、種々のエネルギー準位を有する色素 と組み合わせるため、酸化バナジウムから酸 化亜鉛に連なる第四周期の元素についても ナノ薄膜化を進めている。 # 5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線) ### [学会発表](計 6 件) 宇佐美久尚、鳥居友樹、酸化チタンナノ薄膜のパンド端エネルギー準位と水の酸化分解活性、2016年光化学討論会、2016年9月6日-8日、東京大駒場キャンパス(東京) 宇佐美久尚、小西卓、酸化物ナノ薄膜と複合化したルテニウム錯体の光電子移動、第31回配位化合物の光化学討論会、2016年8月8日-10日、京都工繊大松ヶ崎キャンパス(京都) 小西卓、<u>宇佐美久尚</u>、ルテニウムトリスビ ピリジル錯体 酸化チタンナノ複合膜にお ける光電子移動の直接観測、3P024、2015 年 光化学討論会、2015 年 9 月 9 日-11 日、大阪 # 市大杉本キャンパス (大阪) Hisanao Usami, Ryo Nishizawa, Suguru Konishi, Photoelectrochemical characterization of titanium oxide-manganese oxide nano-film fabricated by organic inorganic hybrid LB film, 日本化学会第 95 春季年会, 2A7-55、2015 年 3 月 26 日-29 日、日本大学船橋キャンパス(千葉) 宇佐美久尚、奥野瑛司、小西卓、金属酸化物ナノ薄膜と複合化した長鎖アルキルルテニウムトリスビピリジル錯体の光誘起電子移動、第26回配位化合物の光化学討論会O-24、2014年8月6日-8日、首都大学東京南大沢キャンパス(東京) 小西卓、<u>宇佐美久尚</u>、チタン錯体と複合化 した LB 膜中での長鎖アルキルルテニウム錯 体の光誘起電子移動、第 26 回配位化合物の 光化学討論会 P-49、2014 年 8 月 6 日-8 日、 首都大学東京南大沢キャンパス(東京) ### 〔その他〕 ホームページ等 http://soar-rd.shinshu-u.ac.jp/profile/ja.uacFjekV. html#assigned_class # 6. 研究組織 (1)研究代表者 宇佐美 久尚(USAMI, Hisanao) 信州大学・学術研究院繊維学系・教授 研究者番号: 60242674