科学研究費助成事業

研究成果報告書

科研費

平成 28年 6月 10 日現在

機関番号: 14301
研究種目:挑戰的萌芽研究
研究期間: 2014 ~ 2015
課題番号: 26620059
研究課題名(和文)多面体パラジウムナノ粒子の水素吸蔵特性に関する研究
研究課題名(英文)Study on Hydrogen Storage Properties of Polyhedral Palladium Nanoparticles
研究代表者
寺西 利治 (Teranishi, Toshiharu)
京都大学・化学研究所・教授
研究者番号:50262598

交付決定額(研究期間全体):(直接経費) 3,000,000円

研究成果の概要(和文):Pdナノ粒子の水素吸蔵/放出特性の結晶性・粒径依存性を検討するため、主に6種類の単結 晶正六面体Pdナノ粒子(6.9、10、12、15、21、39 nm)の水素吸蔵特性と結晶構造変化について検討した。Pdナノ粒子 では、一旦吸蔵された水素原子はPdナノ粒子中で粒径が小さいほど極めて安定に存在することが分かった。放出過程に 注目すると、立方体Pdナノ粒子の水素化物相の約80%は水素を放出せずPd相に変換されないことが明らかとなった。 方、新たに合成したPdナノディスクが可視・近赤外領域に局在表面プラズモン共鳴吸収をもつことを明らかにし、プラ ズモン励起が鈴木カップリング反応を増強することが分かった。

研究成果の概要(英文): Six kinds of single crystalline cubic Pd nanoparticles with sizes of 6.9, 10, 12, 15, 21, and 39 nm were synthesized to investigate the size- and crystallinity-dependent hydrogen storage/release properties of the Pd nanoparticles. It was found that the hydrogen atoms once stored in the smaller Pd nanoparticles are thermodynamically more stable. On the other hand, it was demonstrated that the newly synthesized hexagola Pd nanodisks showed the localized surface plasmon resonance in the visible to near-infrared region and that the localized surface plasmon enhanced the catalytic activity of the Pd nanodisks for Suzuki coupling reactions.

研究分野: 無機合成化学

キーワード: ナノ粒子 コロイド パラジウム 多面体 結晶構造 水素吸蔵 プラズモン

1. 研究開始当初の背景

我が国のエネルギー供給構造は大変革を 迫られており、地球環境・生活環境保全の 面から自然エネルギーへの緩やかかつ持続 的なシフトは緊急の課題となっている。な かでも自然エネルギーを用い生産した水素 は保存・輸送可能な化学エネルギーである ため、水素エネルギー社会実現が我が国の 進むべき方向の一つと考えられる。そのた めには、物理化学に裏付けされた高性能水 素吸蔵材料の開発が必要不可欠である。水 素吸蔵材料の研究は、高密度かつ安定に水 素を吸蔵できる材料開発という応用面に加 え、量子効果が大きく影響する水素の存在 状態という学術研究上の重要性を持つ。近 年、種々の金属ナノ粒子がバルクにはない 水素吸蔵特性を有することが明らかになっ てきており、また水素吸蔵/放出温度の低 減や速度の向上への期待と相まって、ナノ 粒子の水素吸蔵研究が盛んになっている。

2. 研究の目的

金属ナノ粒子は、水素吸蔵量、水素の吸 蔵/放出温度の低減、生成水素化物の安定 性等の観点から、次世代水素吸蔵材料とし て有望である。申請者は、単結晶正六面体 Pd ナノ粒子および多重双晶正二十面体 Pd ナノ粒子(図1)の水素吸蔵特性研究にお いて、極めて特異な構造特異水素吸蔵特性 を発見している。本研究では、単結晶正六 面体、単結晶正八面体、多重双晶正二十面 体、多結晶球状 Pd ナノ粒子の水素吸蔵特 性を検討し、ナノ粒子の結晶性・露出結晶 面・形状・粒径が水素吸蔵特性に及ぼす影 響を明らかにする。また、in-situ 中性子回 折測定により、各 Pd ナノ粒子中における 水素-水素相関を導出し、吸蔵機構を解明 する。

Pd147H200 lh 対称 Pd147H164 Oh 対称

図1 (a) 20 nm 多重双晶正二十面体 Pd ナ ノ粒子、(b) 20 nm 単結晶正六面体 Pd ナノ 粒子の TEM 像と、(c) 結晶構造の違いによ る水素吸蔵量のシミュレーション (Calvo *et al.*, *Nanotechnology* **2006**, *17*, 1292.) 研究の方法

3~40 nm の範囲で単結晶正六面体、単結晶 正八面体、多重双晶正二十面体、多結晶立方 八面体 Pd ナノ粒子の精密粒径制御および大 量合成を行った後、各粒子の水素吸蔵/放出 特性を PCT 測定装置で詳細に検討する。次に、 大強度陽子加速器施設 (J-PARC)の中性子全 散乱測定により水素-水素相関を導出し、試 料ごとの水素吸蔵密度を見積もり、水素を高 密度化するパラメーターを解明する。最終的 には、水素吸蔵/放出特性・機構の結晶構造 依存性を明らかにし、高密度水素吸蔵材料の 新たな設計指針を提案する。

4. 研究成果

まず、Pd ナノ粒子の水素吸蔵/放出特性の 結晶性・粒径依存性を検討するため、Pd 黒、 1 種類の多結晶球状 Pd ナノ粒子(3.9 nm)、 6種類の単結晶正六面体 Pd ナノ粒子(6.9、 10、12、15、21、39 nm)の水素吸蔵特性と 結晶構造変化について検討した。単結晶正六 面体 Pd ナノ粒子は、ポリビニルピロリドン (PVP)を保護剤とし、Pd(II)イオンのポリオ ール還元により合成した(図2)。水素圧力 組成等温線測定の結果、Pd ナノ粒子の水素吸 蔵量は Pd 黒と同等であるが、一旦吸蔵され た水素原子は Pd ナノ粒子中で粒径が小さい ほど極めて安定に存在することが分かった (図3)。水素化物生成のエントロピー変化 およびエンタルピー変化からも、10 nm 以下 のナノ粒子では特異な水素吸蔵・放出特性を 示すことが分かった。すなわち、強束縛水素 が存在する臨界サイズは、約10nmであると 結論づけられる。ヒステリシスギャップは、

粒径の減少とともに広がる傾向にあること も明らかとなった。 次に、Pd 黒、3 種類の単結晶正六面体 Pd ナノ粒子(6.9、12、21 nm)の水素吸蔵特性 の比較検討を詳細に行うとともに、in-situ 粉 末X線回折パターンのRietveld 解析による Pd 相および Pd 水素化物相の格子定数・存在率

図2 (a) 10 nm、(b) 15 nm、(c) 21 nm、(c) 39 nm 単結晶正六面体 Pd ナノ粒子の TEM 像

図3 単結晶正六面体 Pd ナノ粒子の水素 圧力組成等温線(303 K)

においては、水素化物相が時間とともに徐々 に出現するのに対し、サイズの増加に伴い一 定時間後に水素化物相への転移が突然起こ ることが分かった。また、大きなナノ粒子ほ ど相転移が開始するまでの時間が短く、急激 な変化を示すことが初めて明らかとなった。 放出過程に注目すると、立方体 Pd ナノ粒子 の水素化物相の約 80%は水素を放出せず Pd 相に変換されないことが明らかとなった。 球 状 Pd ナノ粒子比較すると、立方体 Pd ナノ粒 子における水素化物生成および水素脱離は 極端に遅い反応であることを意味している。

正六面体等の多面体構造は、対称性が高い 等方構造と見なせる。等方構造と異方構造に よる水素吸蔵特性の違いを検討するため、厚 さ20 nm、一辺 32~60 nmの六角柱状 Pd ナノ ディスクを新たに合成した(図4)。偶発的 に、六角柱状 Pd ナノディスクが可視・近赤 外領域に吸収をもつことを発見し、Pd の局在 表面プラズモン共鳴波長が紫外から可視・近 赤外領域にシフトしたことが原因であるこ とを明らかにした(図5)。この Pd ナノディ スク、ならびに、同体積の単結晶正八面体 Pd

図 4 一辺 60 nm、厚さ 20 nm の単結晶 Pd ナノディスクの電子顕微鏡像と模式図

図5 一辺 60 nm、厚さ 20 nm の単結晶 Pd ナノディスクおよび同体積の単結晶正八面 体、正六面体 Pd ナノ粒子の UV-vis-NIR ス ペクトル(ナノディスクのみ可視領域に吸 収ピークをもつ)

図6 ヨードベンゼンとベンゼンボロン酸 の鈴木カップリング反応

ナノ粒子および単結晶正六面体 Pd ナノ粒子 をヨードベンゼンとベンゼンボロン酸の鈴 木カップリング反応の触媒に使用したとこ ろ(図6)、可視・近赤外光照射下において、 単結晶正八面体 Pd ナノ粒子や単結晶正六面 体 Pd ナノ粒子に比べ Pd ナノディスクが、3 倍程度触媒活性が高いことが分かった。鈴木 カップリング反応では、ヨードベンゼンの Pd への酸化的付加反応が律速段階になるが、プ ラズモン励起による Pd ナノディスクからヨ ードベンゼン反結合性軌道への電子注入が 起きたため、反応増強が起こったものと考え られる。

今後は、大強度陽子加速器施設(J-PARC) の中性子全散乱測定により水素-水素相関 を導出し、試料ごとの水素吸蔵密度を見積も り、水素を高密度化するパラメーターを解明 する。さらに、可視・近赤外局在表面プラズ モン共鳴による Pd ナノディスクへの水素の 吸蔵速度・吸蔵量の増大、結晶内強束縛吸蔵 を検討する。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線) 〔雑誌論文〕(計1件)

 T. T. Trinh, R. Sato, M. Sakamoto, Y. Fujiyoshi, M. Haruta, H. Kurata, and <u>T.</u> <u>Teranishi</u>, Visible to Near-Infrared Plasmon-Enhanced Catalytic Activity of Pd Hexagonal Nanoplates for the Suzuki Coupling Reaction, Nanoscale, 査読有, Vol. 7, 2015, 12435-12444. (DOI: 10.1039/c5nr03841c)

〔学会発表〕(計10件)

- <u>T. Teranishi</u>, Visible to NIR Nanoplasmonics in Inorganic Nanocrystals, SPIRITS International Symposium, 2016/2/4, 京都大 学(招待)
- ② <u>寺西利治</u>、ナノ仮晶化学:元素置換による ナノ結晶の構造変換、nano tech 2016、 2016/1/28、東京ビッグサイト(招待)
- ③ <u>寺西利治、ヘテロ構造ナノ粒子における光</u> 誘起電荷分離、第2回 OCU 物質科学フロ ンティアシンポジウム、2016/1/8、大阪市 立大学(招待)
- ④ <u>T. Teranishi</u>, Visible-to-NIR Plasmonics in Inorganic Nanodisks, PacifiChem 2015, 2015/12/18, Honolulu (USA) (招待)
- ⑤ <u>T. Teranishi</u>, Visible to Near-infrared Nanoplasmonics in Disk-shaped Nanocrystals, KITPC Program "Plasmonic Nanogaps and Circuits", 2015/10/8, Beijing (China) (招待)
- ⑥ <u>寺西利治</u>、無機ナノ粒子:精密構造制御からエネルギー材料応用まで、サイエンス&テクノロジー講演会、2015/6/25、きゅりあん(招待)
- T. Teranishi, Nanoplasmonics in Inorganic Nanoparticles, Nanotech France 2015, 2015/6/16, Paris (France)
- ⑧ <u>T. Teranishi</u>, Visible to Near-IR Nanoplasmonics in Inorganic Nanoparticles, 227th ECS Meeting, 2015/5/27, Chicago (USA)(招待)
- ⑨ <u>T. Teranishi</u>, Nanoplasmonics in Inorganic Nanoparticles, Pioneers in Photonic Nanostructures and Nanophotonics, 2014/12/5,The Ritz-Carlton, Seoul (Korea) (招待)
- ⑩ <u>寺西利治</u>、無機ナノ粒子のヘテロ界面制御 と特異界面機能、学振 174 委員会第 48 回 研究会、2014/9/5、京都テルサ(招待)

〔図書〕(計1件)

 <u>寺西利治</u>他、近代科学社、ナノコロイド、 2014、264

[その他]

ホームページ等

http://www.scl.kyoto-u.ac.jp/~teranisi/

6.研究組織
(1)研究代表者

寺西 利治(TERANISHI, Toshiharu)
京都大学・化学研究所・教授
研究者番号:50262598