科学研究費助成事業

研究成果報告書

科研費

平成 2 9 年 4 月 2 6 日現在 機関番号: 1 4 3 0 1 研究種目: 挑戦的萌芽研究 研究期間: 2014 ~ 2016 課題番号: 2 6 6 2 0 1 0 4 研究課題名(和文) TRMC@Interfaces: あらゆる有機高分子界面での電子伝導特性計測 研究課題名(英文) TRMC@Inerfaces: Electron Mobility Measurement at Conjugated Molecules-Insulators Interfaces 研究代表者 関 修平(SEKI, Shu) 京都大学・工学研究科・教授 研究者番号: 3 0 2 7 3 7 0 9

交付決定額(研究期間全体):(直接経費) 3,000,000円

研究成果の概要(和文):界面選択的電荷輸送評価法であるFI-TRMC測定法を用いて高分子 有機分子の界面に おける電子輸送を評価した。高い移動度を有する有機半導体の伝導機構を明らかにするために、BTBTおよび BBTBDTの構造異性体に対してFI-TRMC測定を行い、DFT計算を経て、2,7-C12-BTBTおよびBBTBDT中の高い電荷移動 度はではS-S相互作用を介したヘリングボーン構造の安定化によるものと結論できる。さらにペンタセンや C8-BTBTなど、広く用いられている有機半導体に対して、2次元拡散モデルを基盤に解析を行ったところ、トラッ プ密度、トラップ深さ、トラップ脱出頻度を見積もることに成功した。

研究成果の概要(英文):Field-Induced Time-Resolved Microwave Conductivity (FI-TRMC) measurement technique has been developed to probe local motion of charge carriers at polymeric dielectrics-organic semiconductor interfaces. This technique revealed high potential of several isomers with BTBT or BBTBDT core unit as positive charge conductors. Structural analysis of the high potential isomers at the interfaces showed unique herringbone-type structures with 2D pathways stabilized by the Sulfur-Sulfur interactions for the charge carriers, which was also confirmed by the DFT based theoretical calculations. The carrier diffusion model over the 2D transport layers has successfully reproduced the transport mechanisms in the active layers based on not only the above compounds but also the other organic semiconductor molecules, showing wide applicability of the present models to deduce intrinsic value of mobility as well as the determinant processes including trap density, depth, and free/trapped charge carrier ratio.

研究分野:物性物理化学

キーワード: Interfaces マイクロ波 移動度 伝導度 高分子構造 界面

1. 研究開始当初の背景

(1) 有機分子を用いた半導体素子の形成に おいては、その無機材料に対する優位性を最 大化するために、従来無機材料を用いて形成 されていた多くの構成因子も同時に有機材 料で置き換える試みが進められている。中で も、電荷輸送に活性となる半導体層は、ほと んどの場合絶縁層との薄層・積層構造をもと に形成され、この絶縁層に積極的に用いられ る高分子材料界面での構造制御が素子性能 の鍵を握っている。

さまざまな有機半導体材料、中でもアセン系 分子を中心とした π 共役骨格は、環拡大に伴 い開殻性が増大し、大気不安定となる。これ に対し、環内に硫黄原子を有するチェノアセ ンは高い大気安定性と正孔移動度を有し、近 年 盛 ん に 研 究 が な さ れ て い る 。

[1]benzothieno[3,2-b][1]benzothiophene (BTBT) は、2,7-DPh-BTBT の合成と FET 移動度評価 の後、様々な BTBT 派生材料が探索されてき た。

特に 2.7-C8-BTBT では、

FET 法により 複 数の独立グループから30 cm² V⁻¹ s⁻¹を超える 正孔移動度が報告されている。2,7-BTBT がこ のような高移動度を発現する理由は未だ明 らかではない。これらの化合物は、そのπ共 役系を二次元的に拡張していくと最終的に Graphene に到達する。Graphene は線形な分散 関係を持つ Dirac cone を有しており、そのバ ンド構造に由来して特異な電気特性を持つ。 通常 π 共役系を発達させるとキャリアの非 局在化により再配向エネルギーが小さくな る。π共役系の拡張にはオリゴマー化による アプローチがあるが、回転可能な結合により 再配向エネルギーがそれ程小さくならない。 それゆえ単純に平面的に π 共役系を発達さ せることは、高い移動度を発現させる第一ア プローチとしては自然な発想だと思われる。 (2) 汎用的に用いられてきた FET 法とは異 なり FI-TRMC 法は非接触で界面における電 荷移動度を定量できる手法である。これに加 えて、多量のグレインバウンダリーが存在し ていても、基本的にグレイン内部の移動度を 反映することができる。これにより膜質によ らない測定が可能であり、時間コストのかか る膜質最適化を行う必要性がない。この手法 ではトラップサイト密度の推定も可能であ るが、その具体的考察には至っていなかった。 トランジスタは基本的に絶縁体界面におい てキャリアが輸送されるため、界面における トラップサイトの具体的特性の評価は重要 であると考えられる。

2. 研究の目的

(1) FI-TRMC 法を利用したチエノアセン類 の局所正孔移動度の定量に加えて、様々な基 本的物性測定、さらには量子化学計算を組み 合わせることにより、高移動度有機半導体の 電子物性と構造を包括的に議論する。

(2) 広く絶縁体半導体界面に存在するトラップの特性を調べるため、よく知られた有機

半導体と絶縁体との界面に対して FI-TRMC 法を用いた評価を可能にする。マイクロ波伝 導度の実部と虚部を複合的に解析すること で電荷キャリアの特性を評価し、トラップの 深さや脱出頻度などのパラメータの抽出を 可能にする。

研究の方法

MIS 素子は石英基板上に金電極を 30 nm 蒸着、 絶縁層として SiO₂と PMMA をそれぞれ 300、 250 nm、有機半導体層と金をそれぞれ 30 nm 蒸着という手順で作成する。この MIS 素子を マイクロ波空洞共振器に挿入し、電荷注入に 伴うマイクロ波の反射特性を評価する。注入 した電荷数 Nは、素子に流れ込む電流を積算 することによって定量することが可能であ る。これに対して、反射マイクロ波強度の変 化量 ΔP_r は物質の伝導度 σ と比例関係にある ため、既知の伝導度を持つ材料であらかじめ 決定しておいた比例係数を用いて、反射マイ クロ波強度の変化量から有機半導体層の伝 導度の変化を定量することが可能である。こ れらを用いて、絶縁体界面における移動度を 評価する。

4. 研究成果

 アルキル置換位置が異なる 4 種類の C12-BTBT 異性体(図 1)を半導体層として 用いた Metal-Insulator-Semiconductor (MIS) 素子に対して FI-TRMC 測定を行い、界面に おける局所正孔移動度を見積もった。

図 1. C12-BTBT 位置異性体の化学構造 まずは MIS 素子が 1-2 nF 程度の静電容量を 持つキャパシタとしての動作することを確 認した。例えば、10 Hz の矩形波電圧を印加 すると図 2a のように半導体層へ電荷が注入 される。この静電容量は SiO₂、PMMA の比誘 電率をそれぞれ4とした場合 1.4 nF 程度と見 積もられるため妥当な値である。半導体層へ の電荷注入に伴い、反射マイクロ波強度の増 大が観測される(図 2b)。

図 2. MIS 素子への電荷注入量と空洞共振器 からの反射マイクロ波強度の時間変化 反射マイクロ波の変化から見積もられる伝 導度と正孔注入密度の関係から、正孔移動度

を見積もることができる。他の異性体が1 cm² V-1 s-1 を超えてこない中、2,7-体が平均 170 cm² V⁻¹ s⁻¹ と異性体の中で特異的に高い正孔 移動度を示した。X 線単結晶構造解析と Hirshfeld analysis により結晶構造を確認する と、2,7-体はヘリングボーン構造を取ってい るが、他の異性体はπスタックに近いパッキ ング構造を有していた。たとえ BTBT コアを 有していてもパッキング構造によっては低 い移動度に留まるということが強く示唆さ れる結果である。実際 Cyclic Voltammetry に より見積もられた第一酸化電位は全ての異 性体で 0.879-0.956 V vs Fc/Fc+と似通った値 を示した。これに対して光電子分光により見 積もられたイオン化ポテンシャルは、他の異 性体はおおむね 5.9 eV であるのに対して、 2,7-体のみが 5.27 eV と低い値を示した。この 0.6 eV もの HOMO の上昇は孤立分子から凝 集相に移行する間に 2,7-体の特異的な電子特 性が反映されていると考えてよく、非常に大 きい分子間相互作用が示されている。

BTBT の π 共 役 系 を 拡 張 さ せ た Bis[1]benzothieno[2,3-*d*;2',3'-*d*']benzo[1,2-b;4,5b']dithiophene (BBTBDT) 誘導体 (図 3) につ いて、先と同様の MIS 素子を用い FI-TRMC 法によりその構造-電荷輸送特性の関係を調 べた。

BBTBDT: R = H **C8-BBTBDT**: R = C₈H₁₇ iso-BBTBDT: R = H C8-iso-BBTBDT: R = C₈H₁₇

図 3. BBTBDT 誘導体の化学構造 反射マイクロ波強度から見積もられる伝導 度と注入電荷量をプロットすると、どちらの 誘導体でも良好な直線関係が得られ、 BBTBDT、iso-BBTBDTは、蒸着膜/PMMA界 面においてそれぞれ 4.5 cm² V⁻¹ s⁻¹、0.6 cm² V⁻¹ s⁻¹の正孔移動度を有していることが明ら

図 4. BBTBDT 誘導体の注入電荷量とマイク ロ波伝導度のプロット

これまで報告されている **BBTBDT** の正孔移 動度は蒸着膜の FET において最高 0.47 cm² $V^{-1} s^{-1}$ である。注入電荷密度が少ない時に見 られる不感領域は後に示すとおり界面にお ける深いトラップに対応していると考えら れ、ここから推定されるトラップ密度は 6.6 × 10¹¹ cm⁻² 程度である。**BBTBDT** が iso-**BBTBDT** と比較して 7 倍以上も高い正孔 移動度を与える結果となったが、これは BBTBDT が持つ強い分子間相互作用に起因 していると考えられる。実際、電子吸収スペ クトルでは、クロロホルムに溶解した分散状 態において吸収末端はどちらも 400 nm と同 程度であるが、石英基板の上に蒸着で成膜し た凝集状態ではBBTBDT が iso-BBTBDT に比 べて大きく長波長シフトする。この吸収端よ り、凝集に伴うバンドギャップの変化量は BBTBDT、iso-BBTBDTにおいてそれぞれ0.34、 0.14 eV と見積もられる。この強い分子間相互 作用の由来を調べるため、BBTBDT、 iso-BBTBDT それぞれに対して DFT 計算を行 った。HOMO の軌道分布に着目すると、 iso-BBTBDT より BBTBDT の方が、原子半径 の大きい硫黄原子上に多く分布していた。集 合構造にも依存するが、分子から張り出した 大きな原子上に HOMO が局在することで分 子間の軌道の重なりに寄与する確率が高く、 BBTBDT の方が強い分子間相互作用を有し やすいと推測される。

(2) 既存のマイクロ波伝導度測定法とは異 なり、FI-TRMC では、印加電圧を調整するこ とで注入電荷量を正確に調整することが可 能である。この特性を用いて、有機薄膜に存 在する界面トラップの密度を見積もること に成功した。測定試料としては、OFET 分野 で広く用いられているペンタセンを用い、絶 縁体としては PMMA を使用した。注入電荷 量とマイクロ波伝導度の変化をプロットす ると、その傾きよりペンタセン内での電荷キ ャリア移動度は8.9 cm² V⁻¹ s⁻¹ 程度と見積も ることが出来る(図 5)。このプロットでは、電 荷注入を行ってもマイクロ波伝導度の変化 が小さい不感領域と注入電荷量に線形比例 してマイクロ波伝導度が増えていく線形領 域が見られる。この結果は、低キャリア濃度 領域では大半のキャリアがトラップされ(図 5 (i))、全てのトラップが埋まってから注入 キャリアによるマイクロ波信号が現れる(図 5(ii))ことを示唆している。閾電圧の値か ら Pentacene と PMMA の界面に存在するト ラップの密度は1.0×10¹² cm⁻²と求まり、他 測定法によって測定されたトラップ密度と 良い相関を示す。

しかしながら、(i)の領域でも全てのキャリア が完全にトラップされているわけではなく、 マイクロ波伝導度が現れている。これはペン タセンと PMMA の界面におけるトラップの 深さは熱励起によって抜けることが可能な ほど浅いことを示唆している。このことを確 かめるために、絶縁体の種類とペンタセンの 蒸着温度を変えてペンタセンのグレインサ イズを変えて、FI-TRMC 測定を行った。その 結果が図6である。

図 6. さまざまな絶縁体と蒸着温度における 注入電荷量とマイクロ波伝導度のプロット

注入電荷量とマイクロ波伝導度の相関から 分かるように、線形領域の x 切片であるトラ ップ密度に大きな変化は無いのに対して、線 形領域の傾きである電荷キャリア移動度は 大きく変化していることが分かる。マイクロ 波による伝導度測定は、マイクロ波によるキ ャリアの並進輸送距離が局所的であること が特徴で、材料の本質的移動度が評価できる。 しかしながら、絶縁体の変化により、キャリ ア移動度が大きく変化していることは、グレ イン境界の存在するトラップによると考え られる。原子間力顕微鏡(AFM)を用いて、そ れぞれの試料のグレインサイズを測定し、そ の情報を元に2次元拡散モデルを適用した結 果、グレイン境界に存在するトラップにキャ リアがトラップされ、抜け出すのに必要な時 間は9.4 ps と見積もることが出来た。

更に、トラップの深さを評価するために、新たに複素誘電率解析法を確立した。既存の FI-TRMC 測定では、マイクロ波を空洞共振器 の共振周波数に合わせて測定を行っていた が、新たな測定法では、マイクロ波の周波数 を変調させながら、マイクロ波伝導度の周波 数依存性を測定する。空洞共振器の共振特性 を現す Q カーブは共振周波数付近で放物線 として近似することが出来る(図 7)。

図 7. 電荷注入前(緑)と電荷注入後(赤)の Q カ ーブ

この Q カーブの縦ずれが伝導率の変化に対応し、横ずれが誘電率の変化に対応する。マイクロ波伝導度の周波数依存性を調べることで、測定材料の伝導率変化だけでなく、誘電率変化も同時に測定することが可能である。有機材料における誘電率変化は主にトラップされたキャリアによるものであり、誘電することが出来る。近年、高いキャリア移動度を有することで注目されているC8-BTBTに対してこの測定を行った結果、トラップ深さは9.1 meV と見積もることに成功した。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 13 件)

W. Choi, T. Miyakai, T. Sakurai, A. Saeki, M. Yokoyama, and S. Seki

Non-contact, non-destructive, quantitative probing of interfacial trap sites for charge carrier transport at semiconductor-insulator boundary

Appl. Phys. Lett., **105**, 033302 (2014). DOI: 10.1063/1.4891052

R. Sekiya, Y. Tsutsui, W. Choi, T. Sakurai, S. Seki, Y. Bando, and H. Maeda
Ion-Based Assemblies of Planar Anion
Complexes and Cationic Pt(II) Complexes *Chem. Commun.*, **50**, 10615-10618 (2014).
DOI: 10.1039/C4CC04565C

Y. Tsutsui, T. Sakurai, S. Minami, K. Hirano, T. Satoh, W. Matsuda, K. Kato, M. Takata, M. Miura and S. Seki

Evaluation of Intrinsic Charge Carrier Transporting Properties of Linearand Bent-Shaped π -Extended Benzo-Fused Thieno[3,2-b]thiophenes Phys. Chem. Chem. Phys., 17, 9624-9628 (2015). DOI: 10.1039/C5CP00785B

T. Sakurai, Y. Tsutsui, W. Choi, and S. Seki Intrinsic Charge Carrier Mobilities at Insulator–Semiconductor Interfaces Probed by Microwave-Based Techniques: Studies with Liquid Crystalline Organic Semiconductors *Chem. Lett.*, **44**, 1401-1403 (2015). DOI: 10.1246/cl.150593

Y. Tsutsui, G. Schweicher, B. Chattopadhyay, T. Sakurai, J.-B. Arlin, C. Ruzié, A. Aliev, A. Ciesielski, S. Colella, A. R. Kennedy, V. Lemaur, Y. Olivier, R. Hadji, L. Sanguinet, F. Castet, D. Beljonne, J. Cornil, P. Samorì, S. Seki, and Y. H. Geerts

Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2-b][1]benzothiophe ne *Adv. Mater.*, **28**, 7106-7114 (2016). DOI: 10.1002/adma.201601285

J. Inoue, Y. Tsutsui, W. Choi, K. Kubota, T. Sakurai, and S. Seki Rapid Evaluation of Electron Mobilities at Semiconductor–Insulator Interfaces in an Ambient Atmosphere by a Contactless Microwave-Based Technique *ACS Omega*, **2**, 164-170 (2017). DOI: 10.1021/acsomega.6b00428

W. Choi, Y. Tsutsui, T. Sakurai, and S. Seki Complex permittivity analysis revisited: Microwave spectroscopy of organic semiconductors with resonant cavity *Appl. Phys. Lett.*, **110**, 153303 (2017). DOI: 10.1063/1.4980078

R. S. Torrientes, J. Calbo, W. Matsuda, W. Choi, J. Santos, S. Seki, E. Orti, and N. Martin Efficient Benzodithiophene/Benzothiadiazole-Based n-Channel Charge Transporters *ChemPlusChem*, **82**, 1-8, (2017). DOI: 10.1002/cplu.201700047

M. Yamada, S. Sato, W. Choi, S. Seki, T. Abe, M. Suzuki, Y. Maeda, S. Nagase, and T. Akasaka Temperature Dependence of Anisotropic Transient Conductivity of a La@C2v-C82(Ad) Crystal *Chem. Lett.*, **46**, (2017) doi:10.1246/c1.170279

V. S. Padalkar, D. Sakamaki, K. Kuwada, A. Horio, H. Okamoto, N. Tohnai, T. Akutagawa, K. Sakai, and S. Seki

 π - π Interactions: Influence on molecular packing and solid state emission of ESIPT and non-ESIPT motifs *Asian J. Org. Chem.*, **5**, 938-945 (2016)DOI:

Astan J. Org. Chem., **5**, 938-945 (2016)DOI: 10.1002/ajoc.201600159

V. S. Padalkar, D. Sakamaki, N. Tohnai, T. Akutagawa, K. Sakai, and S. Seki Highly emissive excited-state intramolecular proton transfer (ESIPT) inspired 2-(2 ' -hydroxy)benzothiazole - fluorene motifs: spectroscopic and photophysical properties investigation *RSC Adv.*, **5**, 80283-80296 (2015). DOI: 10.1039/C5RA17980G

V. S. Padalkar, D. Sakamaki, K. Kuwada, N.

Tohnai, T. Akutagawa, K. Sakai, and S. Seki AIE Active Triphenylamine–Benzothiazole Based Motifs: ESIPT or ICT emission *RSC Adv.*, **6**, 26941-26949 (2016). DOI: 10.1039/C6RA02417C

V. Padalkar, K. Kuwada, D. Sakamaki, N. Tohnai, T. Akutagawa, K. Sakai, T. Sakurai, and S. Seki AIE Active Carbazole-Benzothiazole Based ESIPT Motifs: Positional Isomers Directing the Optical and Electronic Properties *Chem. Select*, 2, 1959-1966 (2017). DOI: 10.1002/slct.201602044

〔学会発表〕(計 19 件) Shu Seki

Non-Destructive Probing of Charge Carrier Transport in Electronic Conductive Molecular Materials and Their Interfaces International Symposium of Integrated Molecular/Materials Science and Engineering 2014 2014 年 11 月 1~3 日

Southeast University, Nanjing, China (口頭発表、基調講演)

Shu Seki Electron mass and conductivity on pi-conjugated molecules in their condensed phases and at interfaces Solvay Workshop on "Charge, spin, and heat transport in organic semiconductors" 2016 年 11 月 15~17 日 Universite Libre de Bruxelles, Belgium (口頭発表、招待講演)

筒井 祐介、崔 旭鎮、櫻井 庸明、関 修平 マイクロ波を用いた低分子有機半導体の局 所伝導度評価法の開発 第77回応用物理学会秋季学術講演会 2016年9月13~16日 新潟県 朱鷺メッセ (ロ頭発表、招待講演)

関 修平 マイクロ波を用いた電荷輸送の非接触・非破 壊計測と界面・高圧下伝導計測への展開 第 64 回高分子討論会 2015 年 9 月 15~17 日 東北大学川内キャンパス (ロ頭発表、招待講演)

Shu Seki Electron Mobility of Zero, One and Two Dimensional Nanocarbons in their Bulk States / Interfaces PACIFICHEM2015 2015 年 12 月 15~20 日 Honolulu, Hawaii USA (口頭発表、招待講演) 他14件 〔図書〕(計 0 件) 〔産業財産権〕 ○出願状況(計 1 件) 名称:酸化グラフェン還元体導電性評価方法 発明者:古川一暁、関修平、他 権利者:NTT、大阪大学 種類: 番号:特願 2015-164460 特開 2017-044475 出願年月日:2015.8.24 国内外の別: 国内 [その他] ホームページ等 http://www.moleng.kyoto-u.ac.jp/~moleng_06/in dex-j.htm 6. 研究組織 (1)研究代表者 関 修平 (SEKI, Shu) 京都大学大学院工学研究科・教授 研究者番号: 30273709 (2)研究分担者 櫻井庸明 (SAKURAI, Tsuneaki) 京都大学大学院工学研究科・助教 研究者番号: 50632907 佐伯昭紀 (SAEKI, Akinori) 大阪大学大学院工学研究科・准教授 研究者番号: 10362625 (3)研究協力者 崔 旭鎮 (CHOI, Wookjin) 京都大学大学院工学研究科・研究員 筒井祐介 (TSUTSUI, Yusuke) 京都大学大学院工学研究科・研究員 松田若菜 (MATSUDA, Wakana)