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研究成果の概要（和文）：We showed over the course of this project that optimal transport theory 
could have an impact on real world applications (machine learning, imaging, graphics) using a proper
 regularization of the well known optimal transport problem.

研究成果の概要（英文）：This funding was used to push forward the idea that optimal transport could 
be used numerically to solve real life problems using a regularization approach. We have 
demonstrated over the course of this project that these ideas were feasible, and have shown their 
applicability to a very wide range of applications, ranging from graphics and medical imaging to 
graphics and machine learning. These ideas were presented in top conferences and journals.
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below, which illustrate how two mixtures of 
Gaussians can be interpolated. The first Gaussian, 
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distribution on the right
(Euclidean) interpolation, which results 
essentially in purely “vertical” changes, as 
displayed below
for interpolations
 

The optimal transport interpolation (displayed 
the second figure 
measures has a more physical interpretation: the 
mass of each measure is transported 
by moving the first measure on the left to
the measure on the right in a spatial
and meaningful 
called a displacement interpolation.
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possible to use other standard algorithms 
and theoretical tools from convex 
optimization (Fenchel duality, Bregman 
divergences, acceleration and quasi 
Newton methods) to obtain better 
numerical performance. 

2. Create new flexible methodologies that 
could incorporate a priori (geometric) 
information on the space of observations to 
compare probability distributions on such 
observations. These methodologies were to 
be used with different usages: averaging 
(the problem of computing barycenters and 
centrois), dimensionality reduction, or 
supervised learning with structured output 
spaces (when the output of a classifier is 
itself a probability distribution), 
interpolations in graphics or between texts 
seen as clouds of points in 
word-embedding spaces, etc. 

3. Test these new algorithms and 
methodologies on real world data, such as 
that coming from natural language 
processing, neuroscience, imaging or 
graphics, and see whether they could result 
in substantially different or better results. 

 
３．研究の方法 
 
Our research was goal driven, and we tried to 
fulfill all of the three goals outlined above in 
parallel.  
 
To realize the first goal, I have worked 
extensively with a team from INRIA (France) 
that was specialized in optimization (G. Carlier, 
J.D. Benamou, G. Peyré, F. Bach). In terms of 
methodologies, I worked with two students at 
Kyoto University (V. Seguy, A. Rolet) as well as 
a postdoctoral researcher from U. Berkeley (A. 
Ramdas). To obtain convincing results in 
applicative fields I teamed up with experts in 
graphics (J. Solomon, MIT; N. Bonneel, INRIA) 
and an expert in neuroscience (A. Gramfort, 
Telecom). 
 
From a computational perspective, I detected 
very early the potential benefits of using general 
purpose graphical processing units (GPGPU). I 
have therefore invested a substantial amount of 
money to equip myself with an efficient 
computational server with several NVIDIA cards, 
and taught myself as well as students working 
with me how to use such cards. 
 
４．研究成果 

 
This Wakate-A project has directly funded a total 
of 13 publications, among which 2 ACM 
SIGGRAPH papers, 3 NIPS conference 
proceedings, 2 ICML conference proceedings, 1 
JMLR and 2 SIAM journal articles. All of these 
conferences and journals are top tier, if not the 
most respected venues in their respective fields. 
Several of these papers have now more than 50 
citations, which reflects their immediate impact 
in these fields. 
 
From an algorithmic perspective, we proposed in 
papers [3] (see bibliographic section) novel 
convex optimization tools to compute 
barycenters. These tools were natural 
generalizations of the Sinkhorn algorithm. That 
paper has already been cited more than 90 times 
in 2 years. In [2] we proposed to solve more 
advanced and general variational problems 
involving Wasserstein distances using Fenchel 
duality. We believe that this paper holds several 
ideas for future applied work. In [5] we proposed 
the first stochastic optimization approach to 
approximate optimal transport. That paper is 
being used now by the deep learning community 
to train generative models for natural images. 
 
In the field of computer graphics, our methods 
gave for the very first time the ability to compute 
automatically, and in very reasonable time, shape 
interpolations in 3 dimensions with very natural 
results [11]. That feat was made possible through 
the important observation that the Sinkhorn 
algorithm can be implemented in linear time 
when using shapes in regular grids with separable 
metrics. We propose such interpolations in the 
figure below, in which the three 3D shapes at the 
corners of the triangle are handled as 3D uniform 
volumetric distributions. 
 
 
 
 
 
 
 
 
 
 
 
 
We were able to obtain shortly after, in our 
second SIGGRAPH paper [8], an automatic 
differentiation algorithm to solve the inverse 
problem related to that interpolation goal. 



 
Some of the applications in [8] including analysis 
of MRI data. We have also explored such 
applications in [12].  
 
In machine learning, our goal was to analyze 
histograms of features, such as bag
we were able to propose dictionary learning 
methods 
carry out dimensionality reduction. 
 
Finally, two of our recent papers provide several 
research opportunities. We have explored more 
advanced ideas that generalize the Wasserstein 
distance and give it additional, 
invariance properties in [7]. We were also the 
first to provide an algorithm to estimate the 
density of a probability distribution under a 
Wasserstein loss between data and the probability 
model [6]. These ideas have now reached the ML 
community,
Wasserstein GAN have received now wide 
attention.
 
We can thus safely claim that this Wakate
project was 
introduce these results both to audiences 
interested in the mathematical, statistical, app
hardware, and machine learning aspects of 
optimal transport.
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