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Small-sample Deep Learning Method Based on Analytic Initialization of Convolutional
Layers
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We proposed a new deep learning methodology that enable fast and stable learning
from limited amount training examples. We stacked convolutional layers using discriminative analytic
solutions obtained by Fisher weight map to build multi-layer convolutional neural networks. Then we
further fine tune the entire network by means of the standard backpropagation to quickly reach better

local minima. Proposed method achieved state-of-the-art classification accuracy on some standard
benchmarks, namely MNIST and STL-10.
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