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研究成果の概要（和文）：我々は、薬理学に基づく予測パイプラインネットワークを開発した。分子経路に関与するタ
ンパク質に対する試験化合物の結合可能性を正確・効率的に予測できる。予測スコアと実験的結合親和性は、R>0.8と
良好なパフォーマンスを示した。更に既知のバイオアッセイ結果と比較することにより、様々なキナーゼ阻害剤の選択
性を予測した。この結果も高い一貫性を示している。インパクトの高い学術誌に発表し、システム生物学研究所や東京
大学医科学研究所とのプロジェクトでも、創薬分子を同定するためこのツールを使用した。さらに、創薬関係者をはじ
めとした社会全体へ貢献できるよう、オープンアクセスでsystemsDockを公開した。

研究成果の概要（英文）：In order to precisely and efficiently predict the binding potentials of test 
compounds against proteins involved in a molecular pathway, we have developed a network 
pharmacology-based prediction pipeline. By assessing the correlations between the prediction scores and 
the experimental binding affinities, our prediction method shown a good performance in predicting the 
binding potentials (R >0.8).
Additionally, we predicted the selectivity of various kinase inhibitors by comparing with known bioassay 
results, showing a good consistency. The relevant research results have been published on high-impact 
journals. We have also applied it to several joined projects helping collaborators, including those in 
Systems Biology Institute (SBI, Tokyo) and The University of Tokyo (IMSUT), to identify druggable 
molecules. A publicly accessible website called “systemsDock” (http://systemsdock.unit.oist.jp/) has 
been published, dedicating our achievements to the community of drug discovery.

研究分野： Bioinformatics

キーワード： Docking Simulation　Molecular Dynamics　Network Pharmacology　Machine Learning　Molecular Int
eraction　Drug Discovery
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１．研究開始当初の背景 
Molecular docking simulation is an important 
tool used in the discovery of lead compounds 
for drug design. However the generally 
unreliable results obtained by the currently 
available docking tools may be ascribed to 
several methodological defects: (a) the scoring 
functions are over-simplified (e.g. use of point 
charges) in order to calculate protein-ligand 
binding potential rapidly, (b) training sets only 
provide reliable information for particular 
protein families1, (c) protein flexibility and 
solvent-related terms are only taken into 
account in a very primitive way. 

With the massively parallel computing power 
now available within our university (OIST), I 
proposed to develop an Intelligent Dynamic 
Docking Pipeline (IDDP) which applies 
machine learning algorithms and will 
incorporate molecular dynamics and hybridized 
quantum mechanics/molecular mechanics 
(QM/MM). The development of IDDP will 
provide a major advance in the quality and 
reliability of such docking simulations. The 
proposed development builds on an existing 
prototype platform2 which uses multiple 
docking programs together with in-house 
machine learning algorithms and has already 
resulted in significantly improved docking 
simulations (the black bar in Figure 1).  

Molecular docking algorithms have been 
developed over the last decade and are now 
widely used in industry and academia. Docking 
packages commonly used in the pharmaceutical 
industry, include Surflex, LigandFit, Glide, 
GOLD, FlexX, eHiTS and AutoDock. The 
prediction reliability is however still limited3 
(the white bars in Figure 1) and to address this, 
many approaches have been developed. For 
example consensus docking to select a correct 
binding mode4 and rescoring to re-rank the 
docked poses; both gave modest improvements. 

Our in-house tests, however, show that the best 
Pearson correlation coefficient measured 
between the predicted and experimental binding 
affinity was only up to 0.45. Such poor 
reliability leads to unnecessary experimental 
testing and increased costs in the drug 

discovery process. Thus, correctly predicting 
the binding energy of a given protein-ligand 
complex continues being one of the most 
important and difficult issues in the application 
of the docking simulation. 

Molecular Dynamics (MD) simulations can 
provide an accurate description of ligand 
binding that takes into account the flexibility of 
both the protein and the ligand. Detailed 
simulations (50 to 100 ns) of protein-ligand 
complexes can, however, take days of processor 
time and this has been a barrier to the routine 
use of the technique in ligand-docking studies. 
New docking protocols are being developed 
that allow faster sampling times. Our 
preliminary studies using the Desmond package 
have shown that it will be possible to 
incorporate MD into the IDDP to screen a large 
number of docked ligands in a reasonable time. 

A major weakness in all current scoring 
functions is the use of fixed point charges in 
determining electrostatic binding energy. A 
quantum mechanical description of ligand 
interactions allows a more realistic description 
to account for dipole-dipole and charge-transfer 
interactions8. We have recently obtained the 
QM/MM module from Schrodingers Small-
Molecule Drug Discovery Suite which will be 
used to calculate electrostatic interaction 
energies in the final steps of docking simulation. 
The IDDP incorporating both MD and QM/MM 
will in the first instance be extensively tested 
against the PDBbind database of well-
characterized protein-ligand complexes. This 
will allow tuning of the machine learning 
algorithms and should result in a significant 
improvement in the correlation between 
experimental and predicted binding energies 
(dashed-line bar in Figure 1). This will open the 
door to a “systems pharmacology” approach by 
for example testing lead compounds for off-
target binding (e.g. by determining the binding 
(specificity) of a particular inhibitor with the 
proteins in the influenza pathway namely 
FluMap5). 
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