科学研究費助成事業

研究成果報告書

. .

_ ..

2版

						半成	29	年	6)	1	28	日現在
機関番号: 1261	4											
研究種目: 若手研究	(B)											
研究期間: 2014~20)16											
課題番号:2687	0212											
研究課題名(和文)	氏温環境下高圧高	速せん断時	の雪の摩擦	察および粘	諸特性と	こその	発現;	メカニ	ズムの	D解	明	
研究課題名(英文)(Carification of Expression Mecha Femperature Cond	Friction nism in Hi itions	and Adhes igh Sheari	sion Chara ng Veloci	acterist ty unde	ics o r Hig	f Sno h Pre	w and ssure	I Thei and	r Low		
研究代表者												
藤野 俊和(FUJI	NO TOSHIKAZU)											
	,											
東京海洋大学・学	術研究院・助教											
研究者番号:70	508514											
交付決定額(研究期	 冒全体):(直接	経費)	3,100.00	四日 00								

研究成果の概要(和文):本研究では,除雪機械等の合理的かつ効率的な設計開発に求められている「低温」環 境のもと互いに「高圧接触」,「高速せん断」する条件下における雪と機械材料間および雪内部の摩擦および付 着・粘着特性を解明することを目的に,雪と機械材料間および雪内部のせん断特性を計測可能な「環状せん断特 性実験解析システム」をせん断界面における水の発生や流動等の高速かつミクロな現象を高精細に撮影・観察し 解析することも可能なシステムに高度化した.さらに制御された低温環境下で実験解析するための環境システム を構築した.それらシステムを用いて,雪と機械材料間および雪内部の摩擦および付着・粘着特性を実験解析に より解析して考察した.

研究成果の概要(英文): To design and develop more effective and efficient snow removal machines, clarification of friction and cohesion/adhesion characteristics between snow and mechanical materials and in snow is necessary in high shearing velocity under high pressure and low temperature conditions. We originally designed and developed an annular shearing type experimental analysis system that can measure shearing characteristics between snow and mechanical materials and in snow under those conditions to the system that can shoot and observe a high speed and micro phenomenon such as generating and a flow of water between snow and mechanical materials and in snow with high definition. We created an environmental system for conducting experiment analysis under the controlled low temperature condition. The characteristics of friction and adhesion/cohesion between snow and mechanical materials, as well as in snow itself, were analyzed by using these experimental analysis systems.

研究分野:工学

キーワード: トライボロジー 雪氷 機械材料 特殊環境 流体

1. 研究開始当初の背景

(1) 研究の社会的背景

国土の約6割を占める積雪寒冷特別地域 において、少子高齢化社会に突入し、人力除 雪範囲の縮小、熟練機械運転者不足により機 械による除雪範囲の拡大および除雪の質の 向上が強く求められている.この要望を受け、 機械の投入範囲が歩道除雪の推進に見られ るように拡大されつつあり、今後ますます除 雪のための機械の稼動範囲は拡大するもの と思われる.ロータリ除雪機械をはじめとす る雪を扱う機械等の性能向上ならびに安全 性革新に係る技術開発は停滞期にある.その 原因は、経験則に基づく技術開発の行き詰ま りにある.発達が進んでいる動的シミュレー ション解析技術の導入が、行き詰まり打破に 期待されている.

(2) 研究の学術的背景

研究代表者らは、これまでに雪と機械が複 雑かつ高速に動的相互作用するロータリ除 雪機械を対象に、その性能向上と安全性革新 に係る技術開発に不可欠な雪の三次元高速 流動状況と機械への負荷特性を高精度かつ 動的にシミュレーション解析できる方法を 構築してきた.図1にロータリ除雪の動的シ ミュレーション解析モデルを示す.しかし、 この除雪機械の動的シミュレーション解析 方法の構築を阻害する中核的問題に「雪を機 械的に除去する際に必然的に生じる雪がせ ん断変形から破壊に至るまでの雪と作業装 置あるいは雪と雪の動的相互作用、特に摩擦 および付着・粘着特性の未知」がある.

雪の摩擦に関する最近の代表的研究に,国 内では伊東らの研究(1)がある.鋼板表面に石 粒を樹脂付着させた屋根葺材の雪止め性能 を評価するために,表面形状が異なる3種類 の石粒仕上げの屋根葺材と雪の動摩擦係数 を実験的に求めている.このほか土木工学や 建築工学あるいは基礎自然科学の分野にお いて,いわゆる静止構造物と雪の間の摩擦お よび付着特性を研究したものはかなりある. これら静止構造物を対象とした研究では静 止もしくは低速条件下での摩擦および付着 特性を調べている.海外では Casassa らの研 究^②がある.雪および氷の摩擦力を測定した 注目すべき研究であるが、低荷重条件下のみ について解析されている.本研究対象である 除雪機械等で問題となる高速せん断かつ高

負荷条件下における雪の摩擦および付着・粘 着特性に関する関連研究はなく、その解明が 望まれている。特性解明時には、温度環境の 異なる各地で使用される除雪機械等の設計 開発への応用を考慮すると、それら機械の使 用条件に応じて制御した「低温」環境の実現 も重要である。

2. 研究の目的

本研究の目的は、除雪機械等の性能向上と 安全性を合理的に革新するため、その基盤と して活用できる動的シミュレーション解析 方法の構築において渇望されている、「低温」 環境のもと互いに「高圧接触」、「高速せん断」 する条件下における雪と機械材料間および 雪内部の摩擦および付着・粘着特性を解明す ることである.この際、雪のせん断界面にお ける高速かつミクロな現象を精細に観察し 解析することにより、せん断界面おける現象 と雪の摩擦および付着・粘着特性の相関関係 を明らかにする.

3. 研究の方法

本研究の目的である、「低温」環境のもと 互いに「高圧接触」,「高速せん断」する条件 下における雪と機械材料間および雪内部の 摩擦および付着・粘着特性を解明するために, JSPS 科研費 22760111 の支援を受け基盤を構 築した,雪と機械材料間および雪内部のせん 断特性を計測可能な「環状せん断特性実験解 析システム |をせん断界面における水の発生 や流動等の高速かつミクロな現象を高精細 に撮影・観察し解析することも可能なシステ ムに高度化する. さらに制御された低温環境 下で実験解析するための環境システムも構 築する. 独自に設計開発し高度化した環状せ ん断特性実験解析システムを用いて、雪と機 械材料間および雪内部の摩擦および付着・粘 着特性の本格解明を推進する.

実験では、除雪機械等にて破壊を繰り返す ことによって流動する雪の特性解析におい て、最も重要である摩擦および粘着特性を高 精度に求めることに留意する.この際、せん 断速度の影響以外に、雪の粒子直径および含 水率の影響も検討し考察する.せん断界面に おける水の発生や流動等の高速かつミクロ な現象を高速度ビデオカメラにより撮影、観 察する.

4. 研究成果

(1)環状せん断特性実験解析システムの高度化 図2に設計開発し高度化した環状せん断特 性実験解析システムの全体,図3にせん断部 の詳細を示す.図4に下部せん断リングを示 す.図3に示すように、アクリル製の内側せ ん断ケースと外側せん断ケースの間(以下、 せん断ケース内と称する)に雪試料を充填す る.その際、外側せん断ケース側面をハンマ ーにて打撃することにより、雪試料を均一に ならした.実験装置最上部に設置されたエア

表1 撮影条件

カメラユニット	DITECT : HAS-L1					
レンズユニット	SELMIC : SE-M1Z					
解像度 [pixel]	H400 × W300					
フレームレート [fps]	1000					
シャッタースピード[s]	1/2500					
撮影範囲 [mm]	H12 × W8					

シリンダにて上部せん断リングを介してせん断ケース内の雪試料に垂直力を負荷する. せん断ケース底面に設置された下部せん断 リングを AC サーボモータにて駆動し回転す ることにより雪と機械材料間および雪にせん断力を負荷する.下部せん断リングは,雪 と機械材料間の特性計測時には図 4(a)に示 す形状のものを,雪内部の特性計測時には図 4(b)に示す形状のものをそれぞれ使用した. 上部せん断リングと図 4(b)に示す下部せん 断リングには,雪試料全体がすべり回転する ことを防ぐためにすべり止めブラシを設けた.

雪試料に負荷する垂直力は引張圧縮荷重 用ロードセルを用いて計測した. せん断力を 負荷する際の回転速度は下部せん断リング 下に設置したロータリーエンコーダにより, 雪試料と機械材料または雪試料の間に生じ るせん断抵抗力(摩擦力および付着・粘着力) は,上部せん断リングに設置したビーム型ロ ードセルによりそれぞれ計測した. 雪のせん 断界面における水の発生や流動等の高速か つミクロな現象を高速度ビデオカメラにて 撮影し観察した. 表1に高速度ビデオカメラ の主要諸元および撮影条件を示す.

(2) 実験環境システムの構築

図 5 に構築した実験環境システムを示す. -10℃から 5℃までの範囲で温度制御が可能 な低温室内に環状せん断特性実験解析シス テムを設置して,低温環境下における雪と機 械材料間および雪内部の摩擦および付着・粘 着特性の解明実験を行う環境システムを構 築した.実験解析のほかに,雪試料の観察, 降雪期間以外の雪試料の保存にも活用でき る.実験解析で使用する機器およびセンサ類 はこの低温環境下において使用できるもの を選定した.

(3) 雪の摩擦および付着・粘着特性の実験 解析による解明

① 条件

雪試料は屋外にある機械除雪の対象とな る自然積雪から採取し,雰囲気温度-4±1℃ に制御された低温室内で6ヶ月から9ヶ月の 間保存したざらめ雪⁽³⁾を解析対象とした.こ の雪試料を回転式の粉砕機により粉砕した 後,ふるいにかけることで粒径範囲を揃えて 実験に供した.使用したふるいの目開き Wは 0.55mm, 0.85mm, 1.70mm, 2.00mm, 2.36mm お よび 3.35mm である.図6に, 2.36mm の目開 きを通過し 1.70mm の目開きを有するふるい に留まった雪粒子の一例を示す.本研究では, ある粒径範囲を有する雪試料の粒子の大き さを表す代表寸法として個数中位径 d_{50} ⁽⁴⁾を 用いた.これは個数基準粒度分布において累 積率 50%における粒子径である⁽⁴⁾.この d_{50} は,図6に一例を示す雪粒子の画像データか ら画像解析ソフトウェア「ImageJ」により各

図5 実験環境システム

実験解析システム

粒子の円相当径 d_A ⁽⁴⁾とその個数を求め, 個数 基準粒度分布を作成し得た. 図7に, 各雪試 料の個数基準粒度分布をまとめて示す. 図7 より,各試料の d_{50} はそれぞれ2.9mm,2.4mm, 1.8mm および1.0mm となった. 試料のかさ密 度 ρ_s ⁽⁴⁾は, 試料を実験解析システムのせん断 ケース内に充填する直前に電子天秤にて計 測された試料質量と, せん断ケース内に充填 された試料の体積より求めた. 試料温度 T_s は, 試料をせん断ケース内に充填する直前に デジタル式温度計にて計測した. 試料の含水

図6 2.36mmの目開きを通過し1.70mmの目開
 きを有するふるいに留まった雪粒子の
 一例

率 θ_w は、計測された T_s が水の融点(氷点:0°C) を下回ったため 0%と評価した.図 13 および 図 14 に示す初期含水率が 10%から 30%の各雪 試料は、この θ_w が 0%の雪試料に概ね 0°Cの水 を混合させて作成したものである.

雪と機械材料間の特性計測時に使用した 機械材料はSS400である.図4(a)に形状と寸 法を示す.雪との接触面における表面粗さは、 触針式表面粗さ計(小坂研究所:Surfcorder SE300)にて半径方向に4箇所測定し算術平 均して得た.雪との接触面における接触角 は,JIS R 3257:1999;基板ガラス表面のぬ れ性試験方法⁽⁵⁾に記載の静滴法にて5箇所測 定し算術平均して得た.表2に実験条件の一 覧を示す.

2 概要

図8(a)に過渡状態における雪とSS400材の 間のせん断応力 $\tau^{(6)}$ の最大値 τ_{max} とこれが生 じた際の垂直圧力 σ_i の関係,図8(b)に定常状 態における雪とSS400材の間のせん断応力 $\tau^{(6)}$ の平均値 τ_s と垂直圧力の平均値 σ_s の関係 を示す.せん断開始からせん断速度が一定に 達するまでの間を過渡状態,せん断速度が一 定である間を定常状態と定義した.過渡状態 および定常状態における摩擦係数および単 位面積当たりの付着力は,図8(a)に示す τ_{max} - σ_i 線図および図8(b)に示す τ_i - σ_s 線図に,

表 2 実験解析条件

雰囲気	温度: T _a [°C]	-4.0±1.0					
(低温室内)	湿度: RH[%]	50~70					
雪	雪質	ざらめ雪					
	個数中位径: d ₅₀ [mm]	1.0	1.8	2.4	2.9		
	充填質量: m [kg]	0.4	0.4	0.4	0.4		
	かさ密度: $ ho_s$ [kg/m ³]	469~490	469~512	459~469	440~469		
	含水率: θ _w [%]	0	0	0	0		
	温度: T _s [°C]	-3.3	-4.0	-3.3	-3.8		
機械材料	材質	SS400					
	雪との接触面における算術平均粗 さ: <i>Ra</i> [µm](半径方向)	0.736					
	雪との接触面における表面うねり: Wa [µm] (半径方向)	0.384					
	雪との接触面における接触角: $ heta$ [°]	との接触面における接触角: θ[°] 74.9					
負荷条件	垂直圧力: <i>σ_n</i> [kPa]	10, 20, 40 , 60					
	(垂直荷重: F _n [N])	(200, 360, 720, 1080)					
	回転中心から半径 r : 0.81[m]におけ る定常せん断速度: v _s [m/s]	2.5 , 25.4					
	過渡状態における せん断加速度:α[m/s ²]	50.8					

次式によって表されるモール・クーロンの破 壊基準則⁽⁷⁾を適用し求めた.

 $\tau_{max} = \mu_{mt} \text{ (or } \mu_{st}) \cdot \sigma_t + c_{at} \text{ (or } c_{ct}) \qquad (1)$

 $\tau_s = \mu_{ms}$ (or μ_{ss})· $\sigma_s + c_{as}$ (or c_{cs}) (2) ここで, μ_{mt} , μ_{st} および c_{at} , c_{ct} は過渡状態に おける摩擦係数と単位面積当たりの付着力 または粘着力, μ_{ms} , μ_{ss} および c_{as} , c_{cs} は定常 状態における摩擦係数と単位面積当たりの 付着力または粘着力である.

③ 雪と SS400 材の摩擦および付着特性

図9に μ_{mt} と c_{at} ,図10に μ_{ms} と c_{as} の解析結 果をそれぞれ示す.図9および図10の横軸 は、雪試料の個数中位径 d_{50} である.過渡状 態および定常状態において、同一 d_{50} 値で比 較すると、せん断速度 v_s が25.4m/sの場合の μ_{mt} と μ_{ms} および c_{at} と c_{as} は、 v_s が2.5m/sの場 合のそれらより大きい. v_s が2.5m/sの場合、 d_{50} が変化しても μ_{mt} と μ_{ms} および c_{at} と c_{as} は大 きく変化しない.一方、 v_s が25.4m/sの場合、 d_{50} が大きくなると μ_{mt} と μ_{ms} および c_{at} と c_{as} は 小さくなる.

これらの解析結果について考察するため に、雪粒子とSS400 材の接触状態の解析と、 せん断界面における水の発生や流動等の現 象を高速度ビデオカメラにて撮影し観察し た.接触状態の解析では、雪試料とSS400 材 の間に圧力測定フィルム(面積 $A: 960 \text{nm}^2$) を設置し、垂直圧力 40 kPa にて雪試料に垂直 力を負荷した.圧力測定フィルムは雪粒子と SS400 材が接触した領域が変色する.図11 の (a) は d_{50} が 1.0 mm の雪試料とSS400 材の接触 状態を、同図(b) は d_{50} が 2.9 mm の雪試料と

SS400 材の接触状態を示す. 図 11 において, 雪粒子と SS400 材が接触した領域が黒色で示 されている.黒色で表示された接触領域の面 積の総和 Ar を画像解析ソフトウェア 「ImageJ」にて解析したところ、d50が1.0mm の雪試料とSS400 材の接触面積率 A_r (= A_r/A) は2.6%, d₅₀が2.9mmの雪試料とSS400材のA ,は 1.8%となった. すなわち,同一垂直力を 負荷した場合,雪試料の個数中位径が大きく なると、雪粒子と SS400 材の接触領域の面積 の総和は小さくなる、せん断速度が大きいほ ど,単位時間当たりにより多くの雪粒子が SS400 材と接触するので、雪試料の個数中位 径の増加に伴う接触総面積の減少は、せん断 速度が大きいほど雪の摩擦および付着特性 の変化により大きな影響を及ぼすと考えら れる. さらに図 12 に示す高速度ビデオカメ ラにて撮影した雪のせん断界面の映像によ ると vs が 25.4m/s, d50 が 2.9mm の場合, 雪と SS400 材の界面において青色で囲まれた領域 に摩擦熱による雪の融解水が確認された. こ の融解水は潤滑剤の役割を果たすと考えら れる. 以上のことから図 9 および図 10 にお いて, せん断速度が大きい vs が 25.4m/s のと き, d_{50} が大きくなると μ_{mt} , μ_{ms} および c_{at} , c_{as} は小さくなったと考えられる.

図 13 と図 14 に過渡および定常状態におけ る μ_{mt} および μ_{ms} と初期含水率 w_0 の関係を示す. 図 13 より v_s が 2.5m/s および 25.4m/s いずれ においても、 w_0 が大きくなると μ_{mt} も大きく なる傾向がある.これは w_0 の増加に伴いせん

図 11 垂直圧力 40kPa 負荷時の雪と SS400 材の 接触状態

図 12 v_s: 25.4m/s, d₅₀: 2.9mm における雪と SS400 材のせん断界面の状況

断界面近傍に存在する水の量が増えたため と考えられる.図14より v_s が2.5m/sの場合, w_0 が大きくなると μ_{ms} は大きくなるのに対し て, v_s が25.4m/sの場合には w_0 が変化しても μ_{ms} は大きく変化しない.

雪内部の摩擦および粘着特性

図 15 と図 16 に過渡および定常状態におけ る μ_{st} , μ_{ss} および c_{ct} , c_{cs} と d_{50} の関係を示す. v_s が 2.5m/s の場合, d_{50} が大きくなると μ_{st} と μ_{ss} および c_{ct} と c_{cs} はいずれも大きくなる. v_s が 25.4m/s の場合には, d_{50} が大きくなる と μ_{st} および c_{ct} と c_{cs} は大きくなり, μ_{ss} は小 さくなる.

位面積当たりの粘着力と個数中位径の関係

(4) まとめ

本研究では独自に設計開発し高度化した 環状せん断特性実験解析システムを使用し て,雪とSS400材の間および雪内部の摩擦お よび付着・粘着特性を解析し,せん断速度, 雪の粒子直径および含水率の変化による摩 擦係数および単位面積当たりの付着力また は粘着力の変化傾向を示した.

今後は、雪質および雪の密度などの違いが 摩擦および付着・粘着特性に及ぼす影響につ いて詳細に解析し考察するとともに、雪界面 の高速かつミクロな現象の精細観察と解析 により摩擦および付着・粘着特性の発現メカ ニズムの解明にも挑む予定である.

本研究による実験解析結果や考察は,各種 除雪機械の合理的かつ効率的な設計開発に 寄与すると考えられる.

<引用文献>

- (1)伊東敏幸,苫米地司,天然石粒塗装鋼板 屋根の滑落雪抑止性能評価,日本建築 学会北海道支部研究報告集,No.84, 2011,41-42.
- (2) Gino Casassa, Hideki Narita and Norikazu Maeno, Shear cell experiments of snow and ice friction, Journal of Applied Physics, Vol.69, No. 6, 1991, 3745-3758.
- (3) UNESCO, International Classification for Seasonal Snow on the Ground, IHP-VII Technical Documents in Hydrology, No. 83, 2009.
- (4) 粉体工学の基礎編集委員会,粉体工学の 基礎,日刊工業新聞,1992.
- (5) JIS R 3257:1999, 基板ガラス表面のぬ れ性試験方法, 1999.
- (6)後藤昭博,河村光隆,松島弘輝,綱川浩, 改良リングせん断試験機の試作とその 性能,粉体工学会誌,Vol. 21,No. 3, 1984,131-136.
- (7)前野紀一,福田正己,基礎雪氷講座 I 雪 氷の物性と構造,古今書院,1986.

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

- 〔学会発表〕(計1件)
- 藤野俊和,丹羽泰紀,阿部雅二朗,安達 聖,上石勲,友部恵太,低温環境下高 圧高速せん断時において雪の粒径が雪 とSS400材の摩擦および付着特性に及ぼ す影響,日本機械学会北陸信越支部第 53 期総会・講演会,2016年3月5日, 信州大学(長野県・上田市).

6. 研究組織

(1)研究代表者
 藤野 俊和(FUJINO TOSHIKAZU)
 東京海洋大学・学術研究院・助教
 研究者番号:70508514