科学研究費助成事業

平成 2 8 年 6 月 1 5 日現在

研究成果報告書

機関番号: 35409
研究種目:研究活動スタート支援
研究期間: 2014~2015
課題番号: 26889059
研究課題名(和文)アーチ形ダンパーの履歴性状に関する基礎的研究

研究課題名(英文)Fundamental Study on Bow-shaped Hysteretic Dampers using H-section Members

研究代表者

都祭 弘幸 (TOMATSURI, Hiroyuki)

福山大学・工学部・教授

研究者番号:20736714

交付決定額(研究期間全体):(直接経費) 2,100,000円

研究成果の概要(和文):一般構造用圧延鋼材(SS400)H形鋼曲げ降伏型ダンパーの履歴性状を把握するために,部材 長さ,強軸・弱軸,曲げ降伏領域の加工形状をパラメータとした逆対称曲げせん断実験を行った。比較のためステンレ ス製(SUS304)H形鋼についても部材長さと強軸・弱軸をパラメータとした実験を実施した。 SS400鋼材でも強軸・弱軸ともに安定した履歴性状を有していること,吸収エネルギー量と部材角には相関性があるこ とが確認できた。SS400とSUS304とでは吸収エネルギー量や損傷度に差異はなかった。H形鋼端部を特殊加工することに より累積塑性変形倍率を大きくでき,合理的なダンパーが期待できることが確認された。

研究成果の概要(英文): The flexural yielding dampers using H-section member made by structural rolled steel SS400 were tested under anti-symmetric moment distribution. The objective is to grasp their elastic-plastic structural behaviors and the relationships between drift-angles and the energy absorption. The parameters were span lengths, strong and weak axes, and unique configuration with both ends. To compare steel material, the H-section dampers made by stainless steel SUS304 were also tested. The hysteresis loops of the H-section dampers are stable in both strong and weak axes. The energy absorption of H-section dampers is found to be related to the drift angles. The strong and weak axis E-R transitions had the constant slope respectively in the test results. There is no difference between SS400 and SUS304 in the energy absorption and damage. The H-section member with the unique machining at both ends had large cumulative plastic ductility ratio. It would be expected to have a large damping effect.

研究分野: 建築構造・材料

キーワード: 履歴型ダンパー 制震効果 吸収エネルギー 曲げ降伏型 累積塑性変形倍率 H形鋼 ステンレス鋼 鉄筋コンクリート造 1. 研究開始当初の背景

鋼材ダンパーには、ブレース型、シアリン ク型などの取付け方法があり、様々な制震部 材が開発され実用化されている。それらの鋼 材ダンパーは建物内部に設置され,低降伏点 鋼を使用しているものが多い。

そこで研究代表者は,アーチ形状の鋼製部 材(ダンパー)を RC 造あるいは SRC 造建 物の外部に設置することを提案し、その制震 効果を解析的に検討した。この解析で使用し たダンパー材は、低降伏点鋼を用いたせん断 降伏型の履歴ダンパー(パネル部を低降伏点 鋼・枠部材を SS 材等で製作したもの)では なく、一般的構造用圧延鋼材(SS400)ある いは建築構造用圧延鋼材(SN400)を用いた H 形鋼の部材両端を曲げ降伏させることに よりエネルギー吸収する履歴型ダンパーを 計画している。

解析的検討を行った結果, アーチ形ダンパ ーは,応答層せん断力,転倒モーメント,層 間変形角を抑制でき、かつ入力波に係わらず 応答値を均一化できること、エネルギー履歴 からも建物の制震化に効果があることが確 認できた。また、アーチ形ダンパーに作用す る応答軸方向力は、応力換算で引張・圧縮と もに 1N/mm²程度であり, 部材の履歴性状に影 響を与えるものではないことが確認された。

アーチ形ダンパーは,建物の外部に設置す る方法なので,新築でも耐震改修でも適用で きるという利点がある。また、アーチ形ダン パーで提案した H 形鋼曲げ降伏履歴型ダン パーは、建物のあらゆるところに設置できる ので構造デザイン汎用性が期待できる。

しかしながら,H形鋼の逆対称曲げせん断 実験に関する研究は意外に少なく、その履歴 性状は明らかになっていない。クリア高さと 強度との関係, 塑性後の強度上昇率, 部材角 と吸収エネルギーの関係, 2方向入力時の履 歴性状、解析モデルに関する検討など実用化 に際しては解決しなければならない課題が ある。

研究の目的

本研究は、アーチ形ダンパーのダンパー部に 相当する Η 形鋼の逆対称曲げ降伏時における 履歴性状を把握するための基礎的研究である。 既往の Η 形鋼の研究には,逆対称応力状態を 再現した実験研究は数少なく,実験データの蓄 積が不足している。また, 強軸・弱軸の曲げ降伏 以後の履歴性状を検討した文献は少ない。

ー般構造用圧延鋼材(SS400)を使用した H 形鋼は多くの断面が存在するので,構造デ ザイン汎用性が高い反面,履歴性状を定式化 するには数多くの実験データが必要になる。 そこで本研究では,前述した課題のうちクリア高 さと強度との関係、塑性後の強度上昇率、部 材角と吸収エネルギーの関係などを把握す るため構造実験を実施し、実験データ蓄積に 貢献することを目的とする。また、解析的検 討を行い、解析モデルにおける課題を明らか にする。

さらに、エネルギー吸収性能を高めるための 工夫として,H 形鋼の曲げ降伏域を特殊加工し たダンパーを提案・実験し、その効果を剛性・変 形性能の観点から実験的に確認することを目的 とする。

研究の方法

研究は、実験的研究と解析的研究に分けら れる。実験的研究では、アーチ形ダンパーの ダンパー部である Η 形鋼部分の履歴性状を 把握するために縮尺約1/3の模型を作成し, 図1に示す加力装置を用いて軸力をほぼゼ ロに保持した状態で逆対称曲げせん断実験 を行った。解析的研究では、汎用構造解析プ ログラム RESP-F3T を利用した有限要素法 解析を実施した。

(1) 実験的研究

試験体は、2015年度は図2および表1に 示す SS400 を使用した SS-1 から SS-4 の 4 体,2016年度は図3および表2にSS400で 端部に特殊加工した SS-5 から SS-7 および SUS304 を使用した SUS-1 から SUS-4 の示 す7体の計13体である。それぞれの実験目 的は、表1および表2に示す通りである。ま

表 1. 2015 年度試験体一覧

	断面	h₀(mm)	実験目的				
SS-1	H−100強軸	450	が、パートノスの医歴世代				
SS-2	H−100弱軸	430	タンハーとしての履歴住仏				
SS-3	H−100強軸	000	弾塑性性状, ho/D-強度・				
SS-4	H−100弱軸	900	吸収エネルギー関係				

表 2 2016 年度試驗体一覧

	断面	h₀(mm)	実験目的
SS-5	H−100強軸		
SS-6	H−100強軸	450	エネルギー吸収効率の向上
SS-7	H-100強軸		
SUS-1	H-100強軸	450	並通個00 1,000 41000
SUS-2	H−100弱軸	450	百通剩33-1~33-4200 復
SUS-3	H−100強軸	000	
SUS-4	H−100弱軸	900	の比較

表 3. 材料試験結果一覧

試験体 使用箇所	材種	σ_y N/mm ²	ε _y μ	$\frac{\sigma \max}{\text{N/mm}^2}$	伸び率 %	降伏比
SS-1~7	SS400	309.8	1511	447.1	33.4	0.693
SS-6アングル材	SS400	322.8	1574	471.6	38.5	0.684
SUS-1~4フランジ	SUS304	293.8	1433	659.2	57.2	0.446
SUS-1~4ウェブ	SUS304	318.1	1552	772.8	57.7	0.412

図 4. 試験体 (SS-5~7, SUS-1~4)

た,使用した材料の試験結果を表3に示す。 加力履歴はクリア高さ 900mm に対して, R=1/1000(1 回), 2/1000(5 回), 5/1000(5 回), 10/1000(5 回), 20/1000(3 回), 30/1000(2 回), 40/1000(1回)とした。

計測は水平変位のほか、クリア高さ間の鉛直 変位および図3に示す位置の鋼材ひずみを測定 した。

(2) 解析的研究

構造実験を再現するため実験と同じ載荷 履歴で、材料試験結果を用いたダンパーの解 析を実施した。基礎的な履歴モデルにおける 現状の課題を明確にするために, SS-1 から SS-4 の 4 体に関して実験結果と比較検討を 行った。

- 4. 研究成果
- (1) 実験的研究
- H 形鋼の基本的な構造特性

<2015 年度試験体(SS-1 から SS-4)> 図5に各試験体のQ-R関係を解析結果とと もに示す。また、表4に初期剛性の実験値と 計算値の比較を,表5に各試験体の降伏ひず みに達した変形角と部材端からの距離を、表 6にせん断力の推移を示す。初期剛性の実験 値は R=1/1000 の履歴から算出したものであ り、計算値のヤング係数・断面2次モーメン トは公称値を使用した。実験値と計算値の比 はほぼ2割前後であった。

表4より、クリア高さに係わらず部材縁の 降伏領域は端部から部材せいと同じ 100mm の範囲であること、降伏変形角はクリア高さ

図 5. Q-R 関係 (SS-1~SS-4) 表 4. 初期剛性の実験値と計算値の比

	ho	IS	сK	εK	-K/-K
	mm	mm ⁴	kN/mm	kN/mm	Erc/ Crc
SS-1	450.0	3780000	102.0	78.3	0.77
SS-2	450.0	1340000	36.2	39.2	1.08
SS-3	900.0	3780000	12.8	10.9	0.85
SS-4	900.0	1340000	4.5	54	1 1 9

(注)Es:205kN/mm², _cK:計算值, _EK:実験値

表5. 部材の降伏状況

	SS	5-1	SS	5-2	SS	5-3	SS-4			
/	R	Ly	R	Ly	R	Ly	R	Ly		
☆ 7 ++ % 3.	5	50	2	50	10	50	5	50		
利利	20	100	5	100	20	100	10	100		
パネル部	5	全域	—	弾性	20	上端	30	上端		

(注) R: ×10⁻³rad., Ly: 端部からの降伏領域

SS

SS

パネ

表 6. せん断力の推移

試験体		R(×10 ⁻³ rad.)									
		1	2	5	10	20	30	40			
	正	29.4	55.6	105.3	119.2	131.5	137.6	142.0			
SS-1	負	-32.3	-58.9	-103.8	-116.9	-130.2	-136.0	-140.0			
	平均	30.9	57.3	104.6	118.1	130.9	136.8	141.0			
	Q/Qp	-	—	0.87	0.99	1.09	1.14	1.18			
SS-2	正	20.6	38.8	59.1	68.3	78.6	86.6	89.1			
	負	-20.6	-39.6	-58.0	-67.6	-78.0	-85.7	-89.1			
	平均	20.6	39.2	58.6	68.0	78.3	86.2	89.1			
	Q/Qp		0.69	1.03	1.20	1.38	1.52	1.57			
	正	7.8	15.7	32.3	56.0	63.0	69.0	73.4			
<u> </u>	負	-7.8	-13.9	-30.7	-56.2	-64.3	-70.0	-74.4			
55-3	平均	7.8	14.8	31.5	56.1	63.7	69.5	73.9			
	Q/Qp	_			0.94	1.07	1.17	1.24			
	正	3.9	6.9	15.5	26.4	30.0	32.8	35.2			
	負	-4.9	-7.6	-17.6	-24.1	-29.4	-31.3	-33.3			
55-4	平均	4.4	7.3	16.6	25.3	29.7	32.1	34.3			
	Q/Qn	_	_	0.59	0.89	1 05	1 1 4	1 2 1			

(注) Q:せん断力(kN) Qn:全塑性時せん断力計算値 Qv=2:7n Gv/ba

や H 形鋼の向きにより異なることが分かる。 パネル部は SS-1 では早期(R=4/1000rad.)に 部材全域にわたりせん断降伏した。

表5に示すように降伏発生後も変形角の増 加に伴い、せん断強度は上昇する傾向がある。 強度上昇は、H形鋼を強軸使い(SS-1, SS-3)し た場合,材料試験結果を用いた全塑性時せん 断力Q_nに対して1.2~1.3倍程度であり,弱軸 使い(SS-2, SS-4)の場合 1.6 倍程度となった。 弱軸使いで強度上昇が大きくなる要因は、曲 げ強度に有効なフランジ断面のひずみ硬化域 が縁から内側に拡大するためであると考えら れる。図5のQ-R関係は、せん断力が上昇し ても繰返しにおけるループは劣化もなく安定 している。

SS-1 から SS-4 試験体のそれぞれの変形段 階における吸収エネルギーの平均値を表6に 示す。また,図6に吸収エネルギーEと部材 変形角の関係を示す。SS-1, SS-2 と SS-3, SS-4 ではクリア高さ比2なので, SS-1, SS-2の実 際の変形角は SS-3, SS-4 の 2 倍となる。

図 6 の SS-1 と SS-3 の E-R 関係を見ると,

部材変形角 20×10⁻³rad.以降はほぼ同じ履歴で 推移する。SS-2 と SS-4 でも *E-R* 関係は部材 変形角 20×10⁻³rad.以降でほぼ同じ傾きで推移 していることが分かる。

SS-1 と SS-2 の *E-R* 関係から累乗近似した 式(1)と式(2)を図 6 に実験データとともに示 す。

 $E_1 = 5.0897 \times R^{1.6986}$ · · · · (1) $E_2 = 5.1088 \times R^{1.5795}$ · · · · (2) ここで, E_1 はH 形鋼を強軸使いした場合, E_2 は H 形鋼を弱軸使いした場合の吸収エネル ギーである。それぞれの R² 値は 0.9845 と 0.9938 であり, 相関性は良いと言える。

表 6. 吸収エネルギーの推移

R'	10	20	40	60	80
SS-1	209	1041	3031	5273	7482
SS-2	173	662	1860	3312	4700
R	5	10	20	30	40
SS-3	12	94	912	1911	2938
SS-4	10	86	464	908	1363

R:制御変形角(×10⁻³rad.)クリア高さ900mm,

R': 換算変形角(×10⁻³rad.) クリア高さ450mm

SS-1 から SS-4 の実験結果から以下の知見 が得られた。

- a) H 形鋼の降伏範囲は、今回の実験では強 軸・弱軸でも部材せい程度であった。
- b) 変形角の増加に伴いせん断力が増大する が,強軸・弱軸ともに安定した履歴ルー プを描いた。
- c) せん断力の増大する割合は, 弱軸使いの 方が大きい。
- d) クリア高さの異なる H 形鋼の部材変形角
 20×10⁻³rad.以降における *E-R* 関係の相関
 性を確認できた。
- e) 強軸・弱軸ともに解析結果は、実験の履 歴性状を概ね再現することができた。

②H形鋼端部の形状および鋼材の差異が履 歴性状に及ぼす影響

<2016 年度試験体(SS-5 から SS-7 および SUS-1 から SUS-4)>

図 7 に端部に特殊なディティールを持った SS-5 から SS-7 試験体 Q-R 関係,図 8 にステ ンレス鋼試験体 SUS-1 から SUS-4 の Q-R 関係 を示す。SS-5 試験体は R=20/1000 の一回目サ イクルが終了後から試験体上端部の加工を施 した部分のウェブプレートが損傷し,荷重の 低下が見られた。SS-6の試験体はR=-20/1000 の二回目サイクル後,加工を施した上端部お よび下端部が損傷した。SS-7の試験体は R=40/1000の正側載荷時に試験体下端部に大 きく損傷が見られ大きく荷重が低下した。

SUS-1,SUS-3,SUS-4の試験体は繰り返し 荷重におけるループの劣化はなく, R=40/1000まで安定したループを描いた。た だし,SUS-2のR=40/1000の負側サイクル 時に上下のフランジ溶接部近傍に亀裂が見 られ,荷重が低下した。

図7および図8の図中には赤線で全塑性モ ーメント時の計算値を示している。端部特殊 形状の計算値は概ね実験と良い対応を示し ている。ステンレス鋼の実験値は,計算値を 大きく上回る傾向があった。これはステンレ ス鋼では応力ひずみ関係において降伏点が 明確ではない影響だと考えられる。

図9に各サイクルの吸収エネルギー平均値 の推移を示す。図にはステンレス鋼と普通鋼 を比較するためにSS-1~4の4体を併せて掲 載している。また,横軸は制御変形角ではな く部材角とした。ステンレス鋼と普通鋼とで は、ループ形状は異なるものの強軸・弱軸と もに吸収エネルギーに差異がないことが確 認できた。端部特殊形状のSS-5,6は、ウェ ブのせん断降伏による耐力低下が生じたた め部材角 40×10³rad 以降,吸収エネルギー に増加は見られなかった。せん断降伏を防ぐ ことにより吸収エネルギー量は増大し、等価 粘性減衰定数も安定するものと考えられる。

SS-6 の全塑性モーメント時の強度 (41.0kN)はSS-1の強度(119.1kN)の1/3未満 であり、かつ剛性も低いことからSS-1より も早期に降伏し制震効果が期待できる。また、 強度を低く抑えられるので、部材取付けの剛 性確保が容易になるメリットが考えられる。

③累積塑性変形倍率による評価

曲げ降伏型ダンパーは、せん断降伏型ダン パーのような座屈に伴う極端な耐力低下が ない。しかし、全塑性曲げ応力が作用する部 材端部では、圧縮・引張応力の繰返しによる 破断が考えられる。

制震部材の変形能力を評価する指標としては、(a)累積塑性変形倍率、(b)累積損傷度、(c)等価せん断座屈変形角がある。本研究のよ

図 8. SUS 鋼 Q-R 関係(SUS-1~SUS-4)

うな破断が考えられるダンパーの場合には, 累積塑性変形倍率が用いられる。本研究で実 施した試験体計 11 体について累積塑性変形 倍率による評価を行いダンパーの性能を検 討する。

各試験体の累積塑性変形倍率を計算する ために、図 10 に示すように実験で得られた 荷重変形関係から骨格曲線部とバウシンガ 一部を抽出する。試験体により強度・断面性 能が異なるので、強度上昇率や変形性能を比 較できるように,縦軸は全塑性曲げモーメン トに対する比 M/MP, 横軸は全塑性モーメン トに対応する弾性回転角に対する比 *θ/θ*Pに 置換し無次元化する。SS-1からSS-4はH形 鋼の全塑性断面係数を使用し,端部を特殊加 工したSS-5からSS-7はウェブの欠損やフラ ンジ部の形状を考慮した全塑性モーメント を算出した。SUS-1 から SUS-4 のステンレ ス製 H 形鋼は、ビルト H であるため断面を 採寸した寸法およびフランジとウェブそれ ぞれの降伏応力度を用いて全塑性モーメン トを算出した。また、全塑性モーメントに対 応する弾性回転角は逆対称載荷であること を考慮し式(3)により算出する。

$$\theta_{P} = \left(\frac{h/2}{3EI} + \frac{1}{G \cdot A_{w} \cdot h/2}\right)M_{P} \qquad \cdot \cdot \cdot (3)$$

ここで, *h*:試験体のクリア高さ(mm), *E*: ヤング係数(N/mm²), I: 断面 2 次モーメント (mm^4) , G: せん断弾性係数 (N/mm²), A_w: せん断断面積(mm²)。

耐力低下した場合には、最大荷重の 0.9 倍を 下回らない履歴ループまでの骨格曲線とバウ

= 7

シンガー部を抽出した。

表7に累積塑性変形倍率の算出結果一覧を, 図 11 に各試験体の骨格曲線とバウシンガー 部の履歴を示す。累積塑性変形倍率は式(4) から、骨格曲線およびバウシンガー部の吸収 エネルギーは式(5)により算出した。

$$\eta = \eta_{s} + \eta_{B} \qquad \cdots \qquad (4)$$
$$\eta_{s} = \frac{W_{s}(\Xi) + W_{s}(\underline{\beta})}{M_{\nu}\theta_{\nu}} \quad \eta_{B} = \frac{W_{B}(\Xi) + W_{B}(\underline{\beta})}{M_{\nu}\theta_{\nu}} \quad \cdots \qquad (5)$$

本研究の目的は、ダンパーの変形性能を確 認することではなく, RC 建物の層間に H 形 鋼を曲げ降伏型ダンパーとして設置した場 合の履歴性状およびエネルギー吸収性能を 検討することである。したがって、載荷履歴 制御は全塑性モーメントに対応する弾性回 転角を基準にする変位制御ではなく、層間変 形角 Rによる制御としたのでダンパーの限

骨格曲線・バウシンガー部の抽出方法 図10.

・限界変形角に達した試験休

				12 1.	术但	見生口	- 友 ルク		見	L	. 12	() (<i>2</i> / <i>D</i> /	,,=x± 0	
	M _P	θ_P	最大R	Ws		W_B		η_S	η_B	η_B/η_S	η	η_s/η	η_B/η	M_P : 全塑性モーメント
	kN•m	rad	rad	正	負	E	負							θ_P : 全塑性モーメントに
SS-1	26.8	0.00558	0.08	32.5	31.5	81.8	91.8	64.0	173.7	2.7	237.6	26.9	73.1	対応する弾性回転角
SS-2	12.7	0.00391	0.08	59.2	65.7	153.0	162.6	124.8	315.6	2.5	440.5	28.3	71.7	Ws:骨格曲線での吸収エネルギー
SS-3	26.8	0.00668	0.04	11.3	11.7	17.3	21.3	23.0	38.6	1.7	61.5	37.3	62.7	W _n :バウシンガー部での
SS-4	12.7	0.00716	0.04	8.6	8.6	20.1	22.2	17.3	42.3	2.4	59.5	29.0	71.0	吸収エネルギー
SS-5	11.2	0.00447	0.04	16.2	15.9	46.5	58.0	32.1	104.5	3.3	136.6	23.5	76.5	· · · · · · · · · · · · · · · · · · ·
SS-6	7.2	0.00244	0.06	41.6	35.1	288.0	198.3	76.8	486.4	6.3	563.1	13.6	86.4	η ₅ : 肖俗部の条積型性変形信率
SS-7	15.4	0.00430	0.06	30.3	32.8	129.5	99.4	63.1	228.9	3.6	292.0	21.6	78.4	η_B : (1)
SUS-1	24.2	0.00518	0.08	46.9	54.7	70.1	75.5	101.7	145.6	1.4	247.3	41.1	58.9	累積塑性変形倍率
SUS-2	11.4	0.00374	0.08	82.5	68.6	124.7	176.5	151.1	301.2	2.0	452.2	33.4	66.6	η:累積塑性変形倍率
SUS-3	24.0	0.00630	0.04	8.7	10.5	20.7	24.6	19.2	45.3	2.4	64.5	29.7	70.3	最大R:最大耐力の90%以上を
SUS-4	11.4	0.00675	0.04	7.9	12.0	22.0	27.5	19.9	49.4	2.5	69.3	28.7	71.3	保持する最大部材角(実験値)

思 接 御 州 亦 平 位 索 一 影

図 11. 抽出した骨格曲線およびバウシンガー部

界変形に達した試験体は, SS-5, SS-6, SS-7 (ウェブせん断亀裂), SUS-2 (フランジに 亀裂)の4体である。これら4体の破壊状況 を写真1に示す。

表7·図11より, SS400とSUS304の試験 体を比較すると、強軸・弱軸に係わらず累積 塑性変形倍率(ヵ)の値に差はない。クリア高 さが半分になると、強軸では η が約4倍、弱 軸では約7倍大きくなった。骨格曲線とバウ シンガー部の吸収エネルギーの比率を見ると 骨格曲線が約3割,バウシンガー部が約7割 であった。ただし、ステンレス鋼の方が変形 角の増大に伴い全塑性モーメントに対する耐 力増加割合が大きく、骨格曲線から分かるよ うに剛性が普通鋼に比べて低くなる傾向が見 られる。

同一の載荷履歴を経験した 11 体の曲げ降 伏型ダンパーの実験結果から以下の知見が得 られた。

- a) SS400とSUS304の強軸・弱軸ともに損傷 度に差異は見られなかった。抽出した骨 格曲線とバウシンガー部の曲線にも大き な差異はない。
- b) H 形鋼端部を特殊加工した試験体のうち SS-6 は、せん断降伏により限界変形角が 小さくなったが、同じ履歴則に対して累 積塑性変形倍率が大きいことから合理的 なダンパーとなる可能性がある。
- 5. 主な発表論文等

〔学会発表〕(計 4件)

① 大久保貴弘,<u>都祭弘幸</u>,冨田祐介,弓形 鋼製部材による RC 建物の制震化に関す る研究(その4.端部特殊形状およびス テンレス製H形鋼の逆対称曲げせん断実 験),日本建築学会大会学術講演集,2016.8, 発表確定, 福岡大学(福岡県福岡市)

写真1. 試験体の破壊状況

ALAD

 θ/θ_P

亀裂

40

1.5

SUS-4

(b) SS-6

(d) SUS-2

- ②都祭弘幸,大久保貴弘,冨田祐介,弓形鋼 製部材による RC 建物の制震化に関する研 究(その5.累積塑性変形倍率による評 価),日本建築学会大会学術講演集, 2016.8, 発表確定, 福岡大学(福岡県福岡 市)
- 3 Hiroyuki Tomatsuri, Study on Bowshaped Hysteretic Dampers for RC Buildings, SEWC2015, 5th Structural Engineers World Congress, Singapore, **USBROM**, 2015.10
- ④都祭弘幸,前島克朗,弓形鋼製部材による RC 建物の制震化に関する研究(その3. H 形鋼の逆対称曲げせん断実験), 日本建 築学会大会学術講演集, C-2 分冊, pp.611-612, 2015.9, 東海大学(神奈川県平 塚市)

〔産業財産権〕 ○出願状況(計 1件) 名称:曲げ降伏型ダンパー 発明者: 都祭弘幸 権利者:福山大学 種類:特許 番号: 特願 2016-018188 号 出願年月日:平成28年2月2日 国内外の別: 国内

6. 研究組織 (1)研究代表者 都祭 弘幸(TOMATSURI, Hiroyuki) 福山大学・工学部・教授 研究者番号:20736714