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A study to resolve the mechanism by which osteoblasts and osteocytes regulate the
differentiation of mesenchymal stem cells
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An analytical study of cell-cell communications between murine osteoblast-like
MLO-A5 cells and mesenchymal stem cell (MSCs)-like C3H10T1/2 cells was performed. The mRNA expression
levels of several osteogenic transcription factors did not differ between the co-cultured and
mono-cultured C3H10T1/2 cells, but those of ALP and BSP were approximately 400-fold higher in the
co-cultured cells. Patch clamp and biocytin transfer assays revealed gap junction-mediated communication
between co-cultured C3H10T1/2 and MLO-A5 cells. A gap junction inhibitor suppressed the increases in the
ALP and BSP mRNA expressions in co-cultured C3H10T1/2 cells. Furthermore, the histone acetylation levels
were higher in co-cultured 10T-GFP cells than mono-cultured 10T-GFP cells. These results suggest that
osteoblasts and BMSCs associate via gap junctions, and that gap junction-mediated signaling induces
histone acetylation that leads to elevated transcription of the genes encoding ALP and BSP in MSCs.
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Fig. 1. The expression levels of the osteogenic
markers in the co-cultured 10T-GFP.

(A) Schematic illustration of the co-culture system
used in this study. Equal numbers of 10T-GFP and
MLO-A5 cells were mixed, plated onto culture dishes,
and co-cultured in growth medium. (B) Real-time
RT-PCR analyses of the mRNA expression levels of
osteogenic transcription factors (Runx2, Osterix, DIX5,
and Msx2) and osteoblast markers (ALP and BSP) in
10T-GFP cells that were mono-cultured or co-cultured
with MLO-AS5 cells for 24 h. The expression level of
each mRNA was normalized to that in the
corresponding mono-cultured cells and the data are
represented as the mean + SD of n = 3 replicates. *P <
0.05.
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Fig. 2. Gap junctions between 10T-GFP and
MLO-AS5.

(A) Patch clamp assays showing the passage of
electrical current between pairs of MLO-A5 and
MLO-A5 cells (a), 10T-GFP and MLO-AS5 cells (b),
and 10T-GFP and 10T-GFP cells (c) that were cultured
for 24 h prior to analysis. The cells with the attached
patch pipettes are numbered. (B) Fluorescence
microscopy images of biocytin-injected 10T-GFP and
MLO-AS5 cells. 10T-GFP cells were mono-cultured or
co-cultured with MLO-AD5 cells 24 h and then biocytin
was injected into a pair of adjacent 10T-GFP and
MLO-AS5 cells, or a pair of adjacent mono-cultured
10T-GFP cells. The cells were cultured for another 6 h,
fixed, and then stained with DAPI to detect the nuclei
(blue). Biocytin transfer between neighboring cells
was detected using Alexa Fluor 594-conjugated
streptavidin (red).
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Fig. 3. Effect of gap junction inhibitors on ALP and
BSP mRNA expression in co-cultured 10T-GFP cells.
Real-time RT-PCR analyses of on the expression levels
of the ALP and BSP mRNAs in 10T-GFP cells that
were incubated in the presence or absence of CBX
(100 puM) or INI-0602 (100 pM) for 1 h and
mono-cultured or co-cultured with MLO-A5 cells for
12 h. The expression level of each mRNA was
normalized to that in the non-treated mono-cultured
cells and the data are represented as the mean + SD of
n = 3 replicates. *P < 0.05.
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Fig. 4. Chromatin remodeling in co-cultured



10T-GFP cells.

(A) Southwestern dot blot analyses of 10T-GFP cells
that were mono-cultured or co-cultured with MLO-A5
cells for 24 h. Genomic DNA was extracted from the
10T-GFP cells and subjected to Southwestern dot blot
analysis with a primary antibody against
methylcytosine residues. (B) Bisulfite sequencing
analyses of the ALP and BSP genes in 10T-GFP cells
that were mono-cultured or co-cultured with MLO-A5
cells for 24 h. Genomic DNA was extracted from
10T-GFP cells and examined at positions —197 to +37
and —176 to +39 of the 5’ promoter region of the ALP
and BSP gene, respectively (relative to the
transcription  initiation  site). Methylated and
unmethylated CpG sites are shown as filled and open
circles, respectively. The sequences of five bacterial
clones per genomic region examined are shown. (C)
Immunoblot analyses of the levels of histone
acetylation in 10T-GFP cells that were mono-cultured
or co-cultured with MLO-A5 cells for 24 h.
Immunoblotting was performed using primary
antibodies against acetylated and total core histones
(H2A, H2B, H3, and H4). The expression levels of
actin was used as an internal standard.
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Table 1. Conserved transcription factor (TF)
binging sequence in the promoter region of the top
5 up-regulated genes in co-cultured 10T-GFP

Transcription factor Conserved binding sequence

Caudal type homeobox A (CdxA) TTTAATA
GATA binding protein 1 (GATA1) GGAGATGGGT
Sex determining region Y (SRY) AAACACA
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Fig. 5. Effect of co-culture with MLO-A5 on the
conserved TF-binding sequence activity in 10T-GFP.
Basal luciferase activity of the wild-type murine
ALP promoter construct (W.T.ALP/pro) and of
the indicated truncated promoter constructs
was determined in 10T-GFP. 10T-GFP stably
transfected with each construct were cultured
with or without MLO-A5 for 24 h and then their
luciferase activities were determined. Mean +
S.D.(n=3,P<0.05
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