• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on the improvement of the forecast due to the fusion of deep learning and symbol processing

Planned Research

Project AreaCorrespondence and Fusion of Artificial Intelligence and Brain Science
Project/Area Number 16H06562
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Complex systems
Research InstitutionThe University of Tokyo

Principal Investigator

YUTAKA MATSUO  東京大学, 大学院工学系研究科(工学部), 教授 (30358014)

Co-Investigator(Kenkyū-buntansha) PRENDINGER HELMU  国立情報学研究所, コンテンツ科学研究系, 教授 (40390596)
中山 浩太郎  東京大学, 大学院工学系研究科(工学部), 学術支援専門職員 (00512097)
Project Period (FY) 2016-06-30 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥76,180,000 (Direct Cost: ¥58,600,000、Indirect Cost: ¥17,580,000)
Fiscal Year 2020: ¥14,560,000 (Direct Cost: ¥11,200,000、Indirect Cost: ¥3,360,000)
Fiscal Year 2019: ¥14,560,000 (Direct Cost: ¥11,200,000、Indirect Cost: ¥3,360,000)
Fiscal Year 2018: ¥14,560,000 (Direct Cost: ¥11,200,000、Indirect Cost: ¥3,360,000)
Fiscal Year 2017: ¥14,560,000 (Direct Cost: ¥11,200,000、Indirect Cost: ¥3,360,000)
Fiscal Year 2016: ¥17,940,000 (Direct Cost: ¥13,800,000、Indirect Cost: ¥4,140,000)
Keywords深層学習 / 深層生成モデル / 世界モデル / プランニング / 人工知能 / ウェブマイニング / ディープラーニング / Deep Learning / ウエブマイニング / 人口知能 / 機械学習
Outline of Final Research Achievements

In order to realize the integration of deep learning and symbolic processing, we constructed methods for deep reinforcement learning and studied a world model to acquire the environment and interactions. In the first half of our research, we struggled with the fast pace of the deep learning domain, as our ideas were often published in papers before we could, but in the second half of our research, based on the points raised in the mid-term review, we revised our research theme and were able to lead to many paper results at top international conferences such as ICLR and ICML. Specifically, multimodal deep generative models, or deployment efficient reinforcement learning methods to utilize world models. In the final year of the project, we proposed new models for self-supervised learning of the cerebral cortex, and made significant progress in the integration of brain science and artificial intelligence.

Academic Significance and Societal Importance of the Research Achievements

世界モデルの研究は、現在の深層学習を記号処理と融合する際に基盤となるものである。そのための手法を多面的に研究し、例えば、マルチモーダルな深層生成モデルでは、複数のモーダルが与えられたときに、一部のモーダルで欠損があったときにどのように復元するかという問題を扱った。深層強化学習の分野では、モデルに基づく手法とモデルフリーな手法があるが、この両者の良いとこ取りをするデプロイ効率な手法を提案した。世界モデルの技術は、意味理解を可能とする人工知能につながり、また人工知能と脳科学の融合の土台となる可能性が高く、学術的な意義は大きい。また、今後ロボット等への活用につながれば社会的な意義も大きい。

Report

(6 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • 2016 Annual Research Report
  • Research Products

    (19 results)

All 2021 2020 2019 2018 2017 2016

All Journal Article (5 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (14 results) (of which Int'l Joint Research: 5 results)

  • [Journal Article] Semi-supervised Out-of-distribution Detection Using Output of Intermediate Layer in Deep Neural Networks2021

    • Author(s)
      岡本弘野, 鈴木雅大, 松尾豊
    • Journal Title

      情報処理学会論文誌

      Volume: 62 Issue: 4 Pages: 1142-1151

    • DOI

      10.20729/00210565

    • NAID

      170000184843

    • Year and Date
      2021-04-15
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Modeling Task Uncertainty for Safe Meta-imitation Learning2020

    • Author(s)
      Tatsuya Matsushima, Naruya Kondo, Yusuke Iwasawa, Kaoru Nasuno, Yutaka Matsuo
    • Journal Title

      Frontiers in Robotics and AI

      Volume: 7 Pages: 189-189

    • DOI

      10.3389/frobt.2020.606361

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 服の領域を考慮した写真上の人物の自動着せ替えに関する研究2019

    • Author(s)
      久保静真, 岩澤有祐, 鈴木雅大, 松尾豊
    • Journal Title

      情報処理学会論文誌

      Volume: 60 Pages: 870-879

    • NAID

      130007425034

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 異なるモダリティ間の双方向生成のための深層生成モデル2018

    • Author(s)
      鈴木雅大
    • Journal Title

      情報処理学会論文誌

      Volume: Vol. 59, No. 3 Pages: 859-873

    • Related Report
      2017 Annual Research Report
  • [Journal Article] GeSdA - GPU上でのAutoencoder処理並列化による高速Deep Learningの実装2016

    • Author(s)
      中山 浩太郎、松尾 豊
    • Journal Title

      情報処理学会論文誌

      Volume: 9 Pages: 46-54

    • NAID

      170000148037

    • Related Report
      2016 Annual Research Report
  • [Presentation] Policy Information Capacity: Information-Theoretic Measure for Task Complexity in Deep Reinforcement Learning2021

    • Author(s)
      Hiroki Furuta, Tatsuya Matsushima, Tadashi Kozuno, Yutaka Matsuo, Sergey Levine, Ofir Nachum, and Shixiang Shane Gu
    • Organizer
      International Conference on Machine Learning 2021 (ICML2021)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Estimating Disentangled Belief about Hidden State and Hidden Task for Meta-Reinforcement Learning2021

    • Author(s)
      Kei Akuzawa, Yusuke Iwasawa, Yutaka Matsuo
    • Organizer
      Learning for Dynamics and Control (L4DC)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Deployment-Efficient Reinforcement Learning via Model-Based Offline Optimization2021

    • Author(s)
      Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Shane Gu
    • Organizer
      International Conference on Learning Representations 2021 (ICLR2021)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Group Equivariant Conditional Neural Processes2021

    • Author(s)
      Makoto Kawano, Wataru Kumagai, Akiyoshi Sannai, Yusuke Iwasawa, and Yutaka Matsu
    • Organizer
      International Conference on Learning Representations 2021 (ICLR2021)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Model Based Reinforcement Learning for Atari2020

    • Author(s)
      L. Kaiser, et al.
    • Organizer
      ICLR 2020
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] メタ学習としてのGenerative Query Network2018

    • Author(s)
      谷口尚平, 岩澤有祐, 松尾豊
    • Organizer
      人工知能学会全国大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Extending Robust Adversarial Reinforcement Learning Considering Adaptation and Diversity2018

    • Author(s)
      Hiroaki Shioya
    • Organizer
      International Conference of Learning Representation
    • Related Report
      2017 Annual Research Report
  • [Presentation] Expert-based reward function training: the novel method to train sequence generators2018

    • Author(s)
      Joji Toyama
    • Organizer
      International Conference of Learning Representation
    • Related Report
      2017 Annual Research Report
  • [Presentation] Neuron as an Agent2018

    • Author(s)
      Shohei Ohsawa
    • Organizer
      International Conference of Learning Representation
    • Related Report
      2017 Annual Research Report
  • [Presentation] 内的報酬と敵対的学習によるタスク非依存な注意機構の学習2018

    • Author(s)
      松嶋達也
    • Organizer
      人工知能学会全国大会
    • Related Report
      2017 Annual Research Report
  • [Presentation] ディープラーニングと進化2017

    • Author(s)
      松尾 豊
    • Organizer
      人工知能学会全国大会
    • Place of Presentation
      愛知県名古屋市(ウィンクあいち)
    • Year and Date
      2017-05-23
    • Related Report
      2016 Annual Research Report
  • [Presentation] 画像とテキストの潜在的な意味情報を用いたニューラル翻訳モデルの提案2017

    • Author(s)
      冨山 翔司,味曽野 雅史,鈴木 雅大,中山 浩太郎,松尾 豊
    • Organizer
      人工知能学会全国大会
    • Place of Presentation
      愛知県名古屋市(ウィンクあいち)
    • Year and Date
      2017-05-23
    • Related Report
      2016 Annual Research Report
  • [Presentation] 深層強化学習におけるオフライン事前学習法2017

    • Author(s)
      那須野 薫,松尾 豊
    • Organizer
      人工知能学会全国大会
    • Place of Presentation
      愛知県名古屋市(ウィンクあいち)
    • Year and Date
      2017-05-23
    • Related Report
      2016 Annual Research Report
  • [Presentation] 画像とテキストの潜在的な意味情報を用いたニューラル翻訳モデルの提案2017

    • Author(s)
      冨山 翔司
    • Organizer
      人工知能学会全国大会
    • Related Report
      2017 Annual Research Report

URL: 

Published: 2016-07-04   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi