• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Deep analysis of chemical communication space using artificial intelligence technology

Planned Research

Project AreaFrontier research of chemical communications
Project/Area Number 17H06410
Research Category

Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

Allocation TypeSingle-year Grants
Review Section Science and Engineering
Research InstitutionKeio University

Principal Investigator

Sakakibara Yasubumi  慶應義塾大学, 理工学部(矢上), 教授 (10287427)

Co-Investigator(Kenkyū-buntansha) 佐藤 健吾  慶應義塾大学, 理工学部(矢上), 講師 (20365472)
齋藤 裕  国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 主任研究員 (60721496)
Project Period (FY) 2017-06-30 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥76,180,000 (Direct Cost: ¥58,600,000、Indirect Cost: ¥17,580,000)
Fiscal Year 2021: ¥15,600,000 (Direct Cost: ¥12,000,000、Indirect Cost: ¥3,600,000)
Fiscal Year 2020: ¥15,600,000 (Direct Cost: ¥12,000,000、Indirect Cost: ¥3,600,000)
Fiscal Year 2019: ¥15,600,000 (Direct Cost: ¥12,000,000、Indirect Cost: ¥3,600,000)
Fiscal Year 2018: ¥15,600,000 (Direct Cost: ¥12,000,000、Indirect Cost: ¥3,600,000)
Fiscal Year 2017: ¥13,780,000 (Direct Cost: ¥10,600,000、Indirect Cost: ¥3,180,000)
Keywordsケミカルスペース / 深層学習 / マルチオミックス / バーチャルスクリーニング / 人工知能 / 化合物フィンガープリント / 相互作用
Outline of Final Research Achievements

The purpose of this research is to develop a model that represents a wide variety of chemical communication in a unified manner. We have developed the next-generation COPICAT, which is a virtual screening system that comprehensively and highly accurately predicts protein-compound interactions, and achieved higher accuracy than the state-of-the-art existing methods. We have developed a variational auto-encoder (NP-VAE) for handling natural compounds and succeeded in acquiring a chemical latent space that encodes natural macromolecular structures. A latent space of natural compounds and macromolecular structures was constructed using 1,900 types of compound data provided from the members of this research project. We succeeded in discovering a large number of new PKC ligand candidates through machine learning and expert domain knowledge feedback strategies.

Academic Significance and Societal Importance of the Research Achievements

これらの研究成果は,化学コミュニケーションの理解と制御に学術的に貢献するとともに,医薬品や農薬などの開発にも寄与することが期待される.とくに,世界で初めて構築した天然物・巨大分子構造の潜在空間は本領域でしか成しえない成果である.それに基づいてAIプラットフォームを完成することにより,化合物を介したあらゆる化学コミュニケーションを統一的に理解し,医薬農薬の創薬や共生などの生命現象の解明に資することになる.

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • 2017 Annual Research Report
  • Research Products

    (49 results)

All 2022 2021 2020 2019 2018 2017 Other

All Journal Article (26 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 26 results,  Open Access: 22 results) Presentation (20 results) (of which Int'l Joint Research: 7 results,  Invited: 3 results) Book (2 results) Remarks (1 results)

  • [Journal Article] Informative RNA base embedding for RNA structural alignment and clustering by deep representation learning2022

    • Author(s)
      Akiyama Manato、Sakakibara Yasubumi
    • Journal Title

      NAR Genomics and Bioinformatics

      Volume: 4 Issue: 1

    • DOI

      10.1093/nargab/lqac012

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Genomic style: yet another deep-learning approach to characterize bacterial genome sequences2021

    • Author(s)
      Yoshimura Yuka、Hamada Akifumi、Augey Yohann、Akiyama Manato、Sakakibara Yasubumi
    • Journal Title

      Bioinformatics Advances

      Volume: 1 Issue: 1

    • DOI

      10.1093/bioadv/vbab039

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Deep learning integration of molecular and interactome data for protein-compound interaction prediction2021

    • Author(s)
      Watanabe Narumi、Ohnuki Yuuto、Sakakibara Yasubumi
    • Journal Title

      Journal of Cheminformatics

      Volume: 13 Issue: 1

    • DOI

      10.1186/s13321-021-00513-3

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] MetaVelvet-DL: a MetaVelvet deep learning extension for de novo metagenome assembly2021

    • Author(s)
      Liang Kuo-ching、Sakakibara Yasubumi
    • Journal Title

      BMC Bioinformatics

      Volume: 22 Issue: S6 Pages: 427-427

    • DOI

      10.1186/s12859-020-03737-6

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Chromosomal-scale de novo genome assemblies of Cynomolgus Macaque and Common Marmoset2021

    • Author(s)
      Jayakumar Vasanthan、Nishimura Osamu、Kadota Mitsutaka、Hirose Naoki、Sano Hiromi、Murakawa Yasuhiro、Yamamoto Yumiko、Nakaya Masataka、Tsukiyama Tomoyuki、Seita Yasunari、Nakamura Shinichiro、Kawai Jun、Sasaki Erika、Ema Masatsugu、Kuraku Shigehiro、Kawaji Hideya、Sakakibara Yasubumi
    • Journal Title

      Scientific Data

      Volume: 8 Issue: 1 Pages: 59-59

    • DOI

      10.1038/s41597-021-00935-6

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Prediction of RNA secondary structure including pseudoknots for long sequences2021

    • Author(s)
      Sato Kengo、Kato Yuki
    • Journal Title

      Briefings in Bioinformatics

      Volume: 23 Issue: 1

    • DOI

      10.1093/bib/bbab395

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Max-Margin Model for Predicting Residue-Base Contacts in Protein-RNA Interactions2021

    • Author(s)
      Kashiwagi Shunya、Sato Kengo、Sakakibara Yasubumi
    • Journal Title

      Life

      Volume: 11 Issue: 11 Pages: 1135-1135

    • DOI

      10.3390/life11111135

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Machine-Learning-Guided Library Design Cycle for Directed Evolution of Enzymes: The Effects of Training Data Composition on Sequence Space Exploration2021

    • Author(s)
      Saito Yutaka、Oikawa Misaki、Sato Takumi、Nakazawa Hikaru、Ito Tomoyuki、Kameda Tomoshi、Tsuda Koji、Umetsu Mitsuo
    • Journal Title

      ACS Catalysis

      Volume: 11 Issue: 23 Pages: 14615-14624

    • DOI

      10.1021/acscatal.1c03753

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Machine learning approach for discrimination of genotypes based on bright-field cellular images2021

    • Author(s)
      Suzuki Godai、Saito Yutaka、Seki Motoaki、Evans-Yamamoto Daniel、Negishi Mikiko、Kakoi Kentaro、Kawai Hiroki、Landry Christian R.、Yachie Nozomu、Mitsuyama Toutai
    • Journal Title

      npj Systems Biology and Applications

      Volume: 7 Issue: 1 Pages: 1-8

    • DOI

      10.1038/s41540-021-00190-w

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Evotuning protocols for Transformer-based variant effect prediction on multi-domain proteins2021

    • Author(s)
      Yamaguchi Hideki、Saito Yutaka
    • Journal Title

      Briefings in Bioinformatics

      Volume: 22 Issue: 6

    • DOI

      10.1093/bib/bbab234

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Comparative analysis of the relationship between translation efficiency and sequence features of endogenous proteins in multiple organisms2021

    • Author(s)
      Tajima Naoyuki、Kumagai Toshitaka、Saito Yutaka、Kameda Tomoshi
    • Journal Title

      Genomics

      Volume: 113 Issue: 4 Pages: 2675-2682

    • DOI

      10.1016/j.ygeno.2021.05.037

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Rational thermostabilisation of four-helix bundle dimeric de novo proteins2021

    • Author(s)
      Irumagawa Shin、Kobayashi Kaito、Saito Yutaka、Miyata Takeshi、Umetsu Mitsuo、Kameda Tomoshi、Arai Ryoichi
    • Journal Title

      Scientific Reports

      Volume: 11 Issue: 1 Pages: 7526-7526

    • DOI

      10.1038/s41598-021-86952-2

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] An improved de novo genome assembly of the common marmoset genome yields improved contiguity and increased mapping rates of sequence data2020

    • Author(s)
      Jayakumar Vasanthan、Ishii Hiromi、Seki Misato、Kumita Wakako、Inoue Takashi、Hase Sumitaka、Sato Kengo、Okano Hideyuki、Sasaki Erika、Sakakibara Yasubumi
    • Journal Title

      BMC Genomics

      Volume: 21 Issue: S3 Pages: 243-243

    • DOI

      10.1186/s12864-020-6657-2

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Predicting antibody affinity changes upon mutations by combining multiple predictors2020

    • Author(s)
      Kurumida Yoichi、Saito Yutaka、Kameda Tomoshi
    • Journal Title

      Scientific Reports

      Volume: 10 Issue: 1 Pages: 19533-19533

    • DOI

      10.1038/s41598-020-76369-8

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Existence and possible roles of independent non-CpG methylation in the mammalian brain2020

    • Author(s)
      Lee Jong-Hun、Saito Yutaka、Park Sung-Joon、Nakai Kenta
    • Journal Title

      DNA Research

      Volume: 27 Issue: 4

    • DOI

      10.1093/dnares/dsaa020

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] MetaVelvet-DL: a MetaVelvet deep learning extension for de novo metagenomics assembly2020

    • Author(s)
      Liang KC, Sakakibara, Y.
    • Journal Title

      BMC Bioinformatics

      Volume: in press

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Developing a codon optimization method for improved expression of recombinant proteins in actinobacteria2019

    • Author(s)
      Saito Yutaka、Kitagawa Wataru、Kumagai Toshitaka、Tajima Naoyuki、Nishimiya Yoshiyuki、Tamano Koichi、Yasutake Yoshiaki、Tamura Tomohiro、Kameda Tomoshi
    • Journal Title

      Scientific Reports

      Volume: 9 Issue: 1 Pages: 8338-8338

    • DOI

      10.1038/s41598-019-44500-z

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Comprehensive epigenome characterization reveals diverse transcriptional regulation across human vascular endothelial cells2019

    • Author(s)
      Nakato R, Wada Y, Nakaki R, Nagae G, Katou Y, Tsutsumi S, Nakajima N, Fukuhara H, Iguchi A, Kohro T, Kanki Y, Saito Y, Kobayashi M, Izumi-Taguchi A, Osato N, Tatsuno K, Kamio A, Hayashi-Takanaka Y, Wada H, Ohta S, Aikawa M, Nakajima H, Nakamura M, McGee RC, Heppner KW, Kawakatsu T, Genno M, Yanase H, Kume H, et al.
    • Journal Title

      Epigenetics & Chromatin

      Volume: 12 Issue: 1 Pages: 77-77

    • DOI

      10.1186/s13072-019-0319-0

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] 機械学習支援による蛋白質高機能化2019

    • Author(s)
      亀田 倫史, 齋藤 裕, 及川 未早来, 梅津 光央, 津田宏治.
    • Journal Title

      分子シミュレーション研究会誌「アンサンブル」

      Volume: 21

    • NAID

      130007792888

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Convolutional neural network based on SMILES representation of compounds for detecting chemical motif2018

    • Author(s)
      Hirohara Maya、Saito Yutaka、Koda Yuki、Sato Kengo、Sakakibara Yasubumi
    • Journal Title

      BMC Bioinformatics

      Volume: 19 Issue: S19 Pages: 526-526

    • DOI

      10.1186/s12859-018-2523-5

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model2018

    • Author(s)
      Akiyama Manato、Sato Kengo、Sakakibara Yasubumi
    • Journal Title

      Journal of Bioinformatics and Computational Biology

      Volume: 16 Issue: 06 Pages: 1840025-1840025

    • DOI

      10.1142/s0219720018400255

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Machine-Learning-Guided Mutagenesis for Directed Evolution of Fluorescent Proteins2018

    • Author(s)
      Saito Yutaka、Oikawa Misaki、Nakazawa Hikaru、Niide Teppei、Kameda Tomoshi、Tsuda Koji、Umetsu Mitsuo
    • Journal Title

      ACS Synthetic Biology

      Volume: 7 Issue: 9 Pages: 2014-2022

    • DOI

      10.1021/acssynbio.8b00155

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Time-Series Analysis of Tumorigenesis in a Murine Skin Carcinogenesis Model2018

    • Author(s)
      Aoto Y, Okumura K, Hachiya T, Hase S, Sato K, Wakabayashi Y, Ishikawa F and Sakakibara Y.
    • Journal Title

      Scientific Reports

      Volume: 8 Issue: 1 Pages: 12994-12994

    • DOI

      10.1038/s41598-018-31349-x

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Convolutional neural networks for classification of alignments of non-coding RNA sequences2018

    • Author(s)
      Aoki Genta、Sakakibara Yasubumi
    • Journal Title

      Bioinformatics

      Volume: 34 Issue: 13 Pages: i237-i244

    • DOI

      10.1093/bioinformatics/bty228

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Ribosome Incorporation into Somatic Cells Promotes Lineage Transdifferentiation towards Multipotency2018

    • Author(s)
      Ito Naofumi、Katoh Kaoru、Kushige Hiroko、Saito Yutaka、Umemoto Terumasa、Matsuzaki Yu、Kiyonari Hiroshi、Kobayashi Daiki、Soga Minami、Era Takumi、Araki Norie、Furuta Yasuhide、Suda Toshio、Kida Yasuyuki、Ohta Kunimasa
    • Journal Title

      Scientific Reports

      Volume: 8 Issue: 1 Pages: 1634-1634

    • DOI

      10.1038/s41598-018-20057-1

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] DEclust: A statistical approach for obtaining differential expression profiles of multiple conditions.2017

    • Author(s)
      Aoto Y, Hachiya T, Okumura K, Hase S, Sato K, Wakabayashi Y, and Sakakibara Y.
    • Journal Title

      PLoS One

      Volume: 12 (11) Issue: 11 Pages: e0188285-e0188285

    • DOI

      10.1371/journal.pone.0188285

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] MetaVelvet-DL: a MetaVelvet deep learning extension for de novo metagenomics assembly2019

    • Author(s)
      Liang KC, Sakakibara Y
    • Organizer
      International Conference on Bioinformatics (InCoB) 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Development of meta-transcriptome analysis method and its application to meta-transcriptome map of common marmoset2019

    • Author(s)
      Uehara M, Kominato M, Hase S, Inoue T, Sasaki E, Toyoda A, Sakakibara Y
    • Organizer
      Intelligent Systems for Molecular Biology (ISMB) / International Society for Computational Biology (ISCB) 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 慶應大学における医療へのAI活用の現状と動向について2019

    • Author(s)
      榊原康文
    • Organizer
      公益社団法人日本技術士会神奈川県支部 第80回CPD講座
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 人工知能と実験の融合による生物工学研究2019

    • Author(s)
      齋藤 裕
    • Organizer
      公益社団法人日本技術士会神奈川県支部 第80回CPD講座
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Rhodococcus erythropolisを用いた遺伝子配列改変によるタンパク質発現調節法の開発.2019

    • Author(s)
      田島 直幸, 北川 航, 齋藤 裕, 西宮 佳志, 玉野 孝一, 安武 義晃, 田村 具博, 亀田 倫史.
    • Organizer
      日本農芸化学会 2019年度大会.
    • Related Report
      2018 Annual Research Report
  • [Presentation] リボソームプロファイリングデータから見る複数生物の内在性タンパク質の翻訳効率と配列特徴量の関係.2019

    • Author(s)
      田島 直幸, 熊谷 俊高, 齋藤 裕, 亀田 倫史.
    • Organizer
      第13回 日本ゲノム微生物学会年会.
    • Related Report
      2018 Annual Research Report
  • [Presentation] 機械学習支援によるタンパク質進化工学検証:GFPからYFPへ.2019

    • Author(s)
      及川 未早来, 齋藤 裕, 亀田 倫史, 中澤 光, 二井手 哲平, 津田 宏治, 梅津 光央.
    • Organizer
      化学工学会 第84年会.
    • Related Report
      2018 Annual Research Report
  • [Presentation] Convolutional neural network based on SMILES representation of compounds for detecting chemical motif2018

    • Author(s)
      Maya Hirohara, Yutaka Saito, Yuki Koda, Kengo Sato, Yasubumi Sakakibara
    • Organizer
      The 29th International Conference on Genome Informatics (GIW 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Convolutional neural networks for classification of alignments of non-coding RNA sequences2018

    • Author(s)
      Genta Aoki and Yasubumi Sakakibara
    • Organizer
      The 26th International conference on Intelligent Systems for Molecular Biology (ISMB2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Development of meta-transcriptome analysis method and its application to meta-transcriptome map of common marmoset2018

    • Author(s)
      Mika Uehara, Minori Kominato, Sumitaka Hase, Takashi Inoue, Erika Sasaki, Yasubumi Sakakibara
    • Organizer
      6th World Congress on Targeting Microbiota
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Development of meta-transcriptome analysis method and its application to meta-transcriptome map of common marmoset2018

    • Author(s)
      榊原康文
    • Organizer
      第77回日本癌学会学術総会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 機械学習を用いたRNA二次構造予測2018

    • Author(s)
      佐藤健吾
    • Organizer
      日本バイオインフォマティクス学会九州地域部会セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Machine-learning-guided mutagenesis for directed evolution of fluorescent proteins.2018

    • Author(s)
      Yutaka Saito, Misaki Oikawa, Hikaru Nakazawa, Teppei Niide, Tomoshi Kameda, Koji Tsuda, Mitsuo Umetsu.
    • Organizer
      The 29th International Conference on Genome Informatics (GIW 2018).
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Machine-learning-guided mutagenesis platform for desired evolution: in the case of fluorescent protein.2018

    • Author(s)
      Misaki Oikawa, Yutaka Saito, Tomoshi Kameda, Hikaru Nakazawa, Teppei Niide, Koji Tsuda, Mitsuo Umetsu.
    • Organizer
      The 10th Protein & Antibody Engineering Summit (PEGS Europe 2018).
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 放線菌ロドコッカス属における遺伝子配列改変による発現調節の解析.2018

    • Author(s)
      Naoyuki Tajima, Wataru Kitagawa, Yutaka Saito, Yoshiyuki Nishimiya, Kouichi Tamano, Yoshiaki Yasutake, Tomohiro Tamura, Tomoshi Kameda.
    • Organizer
      第7回 生命医薬情報学連合大会 (IIBMP 2018).
    • Related Report
      2018 Annual Research Report
  • [Presentation] 人工知能を用いたタンパク質高機能化.2018

    • Author(s)
      亀田 倫史, 齋藤 裕, 津田 宏治, 梅津 光央.
    • Organizer
      第70回 日本生物工学会大会.
    • Related Report
      2018 Annual Research Report
  • [Presentation] AIはタンパク質進化を導くか?:機械学習支援によるGFPのYFP化検証.2018

    • Author(s)
      及川 未早来, 齋藤 裕, 亀田 倫史, 中澤 光, 二井手 哲平, 津田 宏治, 梅津 光央.
    • Organizer
      第70回 日本生物工学会大会.
    • Related Report
      2018 Annual Research Report
  • [Presentation] 放線菌ロドコッカス属における遺伝子配列改変による発現調節手法の開発.2018

    • Author(s)
      田島 直幸, 北川 航, 齋藤 裕, 西宮 佳志, 玉野 孝一, 安武 義晃, 田村 具博, 亀田 倫史.
    • Organizer
      第41回 日本分子生物学会年会 (MBSJ 2018).
    • Related Report
      2018 Annual Research Report
  • [Presentation] 人工知能を用いた化学コミュニケーション空間の多様性の解明に向けて2018

    • Author(s)
      榊原康文
    • Organizer
      日本農芸化学会2018年度大会シンポジウム
    • Related Report
      2017 Annual Research Report
  • [Presentation] Cosearge:HiCデータから複数のTADにまたがる遺伝子共局在を検出するアルゴリズム2017

    • Author(s)
      齋藤裕, 光山 統泰
    • Organizer
      2017年度 生命科学系学会合同年次大会
    • Related Report
      2017 Annual Research Report
  • [Book] 情報解析に基づく遺伝子配列改変による発現量調節. スマートセルインダストリー -微生物細胞を用いた物質生産の展望-.2018

    • Author(s)
      亀田 倫史, 齋藤 裕, 田島 直幸, 西宮 佳志, 玉野 孝一, 北川 航, 安武 義晃, 田村 具博.
    • Total Pages
      240
    • Publisher
      シーエムシー出版
    • ISBN
      9784781313344
    • Related Report
      2018 Annual Research Report
  • [Book] Comparative Epigenomics. Encyclopedia of Bioinformatics and Computational Biology.2018

    • Author(s)
      Yutaka Saito.
    • Total Pages
      3284
    • Publisher
      Elsevier
    • ISBN
      9780128114148
    • Related Report
      2018 Annual Research Report
  • [Remarks] メタゲノムアセンブリプログラム「MetaVelvet-DL」

    • URL

      http://www.dna.bio.keio.ac.jp/metavelvet-dl/

    • Related Report
      2019 Annual Research Report

URL: 

Published: 2017-07-04   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi