Project Area | Development of Molecular Robots equipped with sensors and intelligence |
Project/Area Number |
24104004
|
Research Category |
Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
葛谷 明紀 関西大学, 工学部, 准教授 (00456154)
角五 彰 北海道大学, 理学(系)研究科(研究院), 准教授 (10374224)
平塚 祐一 北陸先端科学技術大学院大学, マテリアルサイエンス研究科, 准教授 (10431818)
瀧口 金吾 名古屋大学, 理学(系)研究科(研究院), 講師 (20262842)
野村 慎一郎 東北大学, 工学(系)研究科(研究院), 准教授 (50372446)
松浦 和則 鳥取大学, 工学(系)研究科(研究院), 教授 (60283389)
|
Co-Investigator(Renkei-kenkyūsha) |
TOYOTA Taro 東京大学, 大学院・総合文化研究科, 准教授 (80422377)
|
Research Collaborator |
HAYASHI Masahito 名古屋大学, 大学院理学研究科, 研究員 (40356259)
|
Project Period (FY) |
2012-06-28 – 2017-03-31
|
Project Status |
Completed (Fiscal Year 2016)
|
Budget Amount *help |
¥317,200,000 (Direct Cost: ¥244,000,000、Indirect Cost: ¥73,200,000)
Fiscal Year 2016: ¥51,740,000 (Direct Cost: ¥39,800,000、Indirect Cost: ¥11,940,000)
Fiscal Year 2015: ¥52,650,000 (Direct Cost: ¥40,500,000、Indirect Cost: ¥12,150,000)
Fiscal Year 2014: ¥60,710,000 (Direct Cost: ¥46,700,000、Indirect Cost: ¥14,010,000)
Fiscal Year 2013: ¥68,640,000 (Direct Cost: ¥52,800,000、Indirect Cost: ¥15,840,000)
Fiscal Year 2012: ¥83,460,000 (Direct Cost: ¥64,200,000、Indirect Cost: ¥19,260,000)
|
Keywords | 分子ロボット / 分子アクチュエーター / 分子集団運動制御 / 人工筋肉 / 実時間シミュレーション / 分子ロボティクス / 人工細胞 / DNAナノデバイス / 人工生命システム / 生命分子計算 / DNAナノ構造 / ペプチドナノ構造 / 巨大リポソーム / 分子モーター制御 / 生体分子シミュレーション |
Outline of Final Research Achievements |
The joint project between the amoeba robot team and other teams developed a giant liposome based amoeba-type molecular robot prototype whose shape can be changed by DNA signals by means of integrating various element technologies including molecular actuators and molecular control systems. As for the molecular actuators, the team developed (1) molecular crutch which control the connection between giant liposome and molecular motors, (2) photo-induced growth system of peptide nanofibers propelling giant liposomes with comet tail-like mechanism, (3) reversible morphological control system of tubulin-encapsulating giant liposomes by hydrostatic pressure, and (4) calcium concentration dependent morphological changing microtubule networks. As for the molecular control systems, the team developed (5)photo-sensitive DNA strands attached on microtubules, (6) microtubule motion pattern controlling system, and (7) particle-based real-time simulation system to reproduce the motion pattern.
|