• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Stochastic Analysis and Quantum Field Theory

Research Project

Project/Area Number 01044063
Research Category

Grant-in-Aid for international Scientific Research

Allocation TypeSingle-year Grants
SectionJoint Research
Research InstitutionNagoya University

Principal Investigator

HIDA Takeyuki  Nagoya Univ., Faculty of Science, Professor, 理学部, 教授 (90022508)

Co-Investigator(Kenkyū-buntansha) KUO H. H.  Louisiana State Univ., Department of Mathmamtics, Research Staff, ビボス, 研究員
RO^^‥CKNER M  エジンバラ大学, ビルフェルト大学, 併任教授
POTTHOFF Jurgen  Louisiana State Univ., Department of Mathematics, Professor, 教授
ALBEVERIO Sergio  Ruhr Univ., Department of Mathematics, Professor, 教授
STREIT Ludwig  Bielefeld Univ., Faculty of Physics, Professor, 教授
WATANABE Hisao  Kyushu Univ., Department of Engineering, Professor, 工学部, 教授 (40037677)
FUKUSHIMA Masatoshi  Osaka Univ., Faculty of Engineering Science, Professor, 基礎工学部, 教授 (90015503)
KUSUOKA Shigeo  Kyoto Univ., R. I. M. S., Associate Professor, 数理解析研究所, 助教授 (00114463)
TAKAHASHI Yoichiro  Tokyo Univ., School of Education, Professor, 教養学部, 教授 (20033889)
OBATA Nobuaki  Nagoya Univ., Faculty of Science, Assistant, 理学部, 助手 (10169360)
SATO Ken-iti  Nagoya Univ., School of Education, Professor, 教養部, 教授 (60015500)
ROCKNER Michael  Edinburgh Univ., Department of Mathematics, Professor
Project Period (FY) 1989 – 1990
Project Status Completed (Fiscal Year 1990)
Budget Amount *help
¥5,500,000 (Direct Cost: ¥5,500,000)
Fiscal Year 1990: ¥3,000,000 (Direct Cost: ¥3,000,000)
Fiscal Year 1989: ¥2,500,000 (Direct Cost: ¥2,500,000)
KeywordsWhite Noise Analysis / Rotation group / Levy group / Levy Laplacian / Whisker
Research Abstract

We have investigated several current topics in stochastic calculus and quantum dynamics. To fix the idea, we explain one of the most important topics of what we have studied.
White noise analysis may be viewed as the harmonic analysis arising from the infinite dimensional rotation group 0*.
Since the white noise measure, which is introduced on the space of the generalized functions, is invariant under the action of the rotation group, it is natural to think of an infinite dimensional analogue of the harmonic analysis on a finite dimensional sphery on which the finite dimensional rotation group acts.
There are several steps for our harmonic analysis depending on the choice of subgroup of 0*.
1. Inductive limit of finite dimensional rotation groups, denoted by G*. The Fock space <symmetry>H_n, the Laplace-Beltrami operator DELTA*, class-one irreducible unitary representations of G* on H_n, and so forth, are well investigated.
2. There is a subgroup Y, called Levy group, which contains infinit … More e dimensional rotations, far from the finite dimensional ones, defined by permutations of coordinates of the basic function space. To carry on a similar calculus as in 1, associated with the Levy group, we need to go one step ahead. Namely, a space of generalized white noise functionals should naturally be introduced, then we are led to discuss the Levy's Laplacian operator that acts effectively on the space of the generalized white noise functionals.
3. We then come to a very interesting subgroup W consisting of all the transformations that come from diffeomorphism of the parameter space. The W is quite different, in character, from G* and the Levy group. To introduce some analytic structure, We consider continuous one-parameter subgroups (called whiskers) of W. Then we take a family of random variables {X(C)}, where the parameter C runs through a certain subclass of analytic, closed, simple manifolds, and where C is deformed by actions of the subgroup of W. A general theory is not yet established, however we can find many interesting questions in analysis as well as several applications. Less

Report

(1 results)
  • 1990 Final Research Report Summary
  • Research Products

    (15 results)

All Other

All Publications (15 results)

  • [Publications] HuiーHsiung Kuo: "Le^^´vy Laplacian of generalized functions on a nuclear space" Journal of Functional Analysis. 94. 74-92 (1990)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] T.Hida: "White Noise Analysisーan Overview" White Noise Analysis. 140-165 (1990)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] M.Fukushima: "Dirichlet forms,diffusion processes and spectral dimensions for nested fractals"

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] J.Potthoff: "Generalized RadonーNikodym derivatives and CameronーMartin theory" International Conference on Gaussian Random Fields 1990. World Scientific. (1991)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] J.Potthoff: "White noise analysis and what it can do for Physics" International Conference on Gaussian Random Fields 1990. World Scientific. (1991)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] T.Hida: "Infinite dimensional rotations and Laplacians in terms of white noise calculus" AMS Transaction.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] J.Potthoff: "A Characterization of Hida distribution" BiBos, (1990)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] J.Potthoff: "Invariant states on random and Quantum fields: φーbounds and white noise analysis" BiBos, (1990)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] Hui-Hsiung Kuo: "Levy Laplacian of generalized functions on a nuclear space" Journal of Functional Analysis. 94. 74-92 (1990)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] T. Hida: "White Noise Analysis - an Overview" White Noise Analysis. 140-165 (1990)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] M. Fukushima: "Dirichlet forms, diffusion processes and spectral dimensions for nested fractals"

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] J. Potthoff: "Generalized Radon-Nikodym derivatives and Cameron - Martin theory" International Conference on Gaussian Random Fields 1990. World Scientific. (1991)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] J. Potthoff: "White noise analysis and what it can do for Physics" International Conference of Gaussian Random Fields 1990. World Scientific. (1991)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] J. Potthoff: BiBos. A Characterization of Hida distribution., (1990)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] J. Potthoff: BiBos. Invariant states on random and Quantum fields : psi - bounds and white noise analysis, (1990)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary

URL: 

Published: 1989-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi