• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

弱双曲型偏微分方程式及び素の解の構造

Research Project

Project/Area Number 01540124
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionKyoto University

Principal Investigator

大矢 勇次郎  京都大学, 工学部, 教授 (70025922)

Co-Investigator(Kenkyū-buntansha) 多羅間 茂雄  京都大学, 工学部, 講師 (90115882)
Project Period (FY) 1989
Project Status Completed (Fiscal Year 1989)
Budget Amount *help
¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1989: ¥600,000 (Direct Cost: ¥600,000)
Keywords弱双曲型作用素 / 初期値問題 / C^∞-級関数 / 流体の方程式 / H^∞適切
Research Abstract

初期値問題が、C^∞-級関数の枠で、適切であることにより、双曲型作用素を決定する(特徴付ける)問題は、多くの研究者が関心を持っている、こゝ25年間の研究代表者等の成果は本質的には変数係数の作用素に対しては、顕著な結果を与えているが定数係数のそれとの関連を含めて考えると、未だ難しい問題が数多く残されている、と云わざるを得ない。例えば、近年流体の方程式の解析で現れた作用素σt^2+a(t.x)IDI(a(t.x)【greater than or equal】870)は、弱双断型作用素の一つとしてよく検討されるべき内容を含んでいる。
本年度は、典型的な例として、σt^2+t^<2k>IDI+αt^lIDI^<1/2>に対する初期値問題がH^∞-適切である為の必要・十分な条件を検討して成果を発表する所迄到達した。一般論の端緒となるであろう。
定理1.
α【greater than or equal】0ならば上記作用素に対する初期値問題はH^∞-適切
定理2.
α<0ならば上記作用素に対する初期値問題がH^∞-適切であるための必要、且十分な条件はs+1【greater than or equal】kであることである。なお、当研究室の大学院学生の一人が上記作用素を次の形γt^2+t^<2k>IDI+αt^lIDI^n(α【element】C,k,l:自然数)の作用素へ拡張するのに最近成功したようである。

Report

(1 results)
  • 1989 Annual Research Report
  • Research Products

    (4 results)

All Other

All Publications (4 results)

  • [Publications] Y.Ohya et S.Tarama: "Le probleme de Cauchy a caracteritiques multiples dans la classe de Gevry(coefficiants Holderiens en t)" Hyperbolic Equations & Related Topics,Proc.Taniguchi Internat.Symp.(1984)Kinokuniya & Academic Press.273-306 (1986)

    • Related Report
      1989 Annual Research Report
  • [Publications] S.Tarama: "Sur les equations hyperboliques a coefficients analytiques par rapport aux varibles spatiales" J.Math.Kyoto Univ.553-561 (1987)

    • Related Report
      1989 Annual Research Report
  • [Publications] S.Hattori & Y.Ohya: "On a differential operator appearing in the analysis of water-waves." to appear in Math.Japonica.

    • Related Report
      1989 Annual Research Report
  • [Publications] Yujiro OHYA: "LE PROBLEME DE CAUCHY A CARACTERITIQUES MULTIPLES" Univ.Pierre et Marie Curie Cours Professe 1979-1980, 121 (1980)

    • Related Report
      1989 Annual Research Report

URL: 

Published: 1989-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi