Project/Area Number |
02044032
|
Research Category |
Grant-in-Aid for international Scientific Research
|
Allocation Type | Single-year Grants |
Section | Joint Research |
Research Institution | University of Tokyo |
Principal Investigator |
HAYANO Ryugo Faculty of Science, University of Tokyo Associate, Professor, 理学部, 助教授 (30126148)
|
Co-Investigator(Kenkyū-buntansha) |
A.MARGARIAN アルメニアYerevan研究所, 研究員
J.EADES スイスCERN研究所, 主任研究員
T.HENNINO フランスSaclay研究所, 教授
P.RADVANY フランスSaclay研究所, 教授
P.KIENLE 独GSI研究所, 教授
TANAKA Masahiko Institute for Nuclear study, University of Tokyo.Research Associate, 原子核研究所, 助手 (20013435)
TOKI Hiroshi Faculty of Science, Tokyo Metropolitan University. Professor, 理学部, 助教授 (70163962)
KUNO Yoshitaka National Laboratory for High Energy Physics. Associate Professor, 助教授
TAMURA Hirokazu Faculty of Science, University of Tokyo, Research Associate, 理学部, 助手 (10192642)
YAMAZAKI Toshimitsu Institute for Nuclear Study, University of Tokyo, Professor, 原子核研究所, 教授 (80011500)
MARGARIAN Amul Yerevan Physics Institute, Researcher
EADES John European Organization for Nuclear Research (CERN), Senior Researcher
HENNINO Thierry Laboratorie National Satyrne, Saclay. Professor
RADVANYI Pierre Laboratorie National Saturne, Saclay, Professor
KIENLE Paul Geselleshaft fu schwerionenforshung, Professor
HENNINO T. Saclay研究所(フランス), 教授
RAVANYI P. Saclay研究所(フランス), 教授
KIENLE P. GSI研究所(ドイツ), 教授
岩崎 雅彦 東京大学, 原子核研究所, 助手 (60183745)
片山 一郎 東京大学, 原子核研究所, 教授 (30028237)
応田 治彦 東京大学, 原子核研究所, 助手 (60221818)
HENNINO Saclay研究所(フランス), 教授
RADVANYI Saclay研究所(フランス), 教授
下浦 享 東京大学, 理学部, 助手 (10170995)
酒井 英行 東京大学, 理学部, 助教授 (90030030)
石原 正泰 東京大学, 理学部, 教授 (40013396)
|
Project Period (FY) |
1990 – 1992
|
Project Status |
Completed (Fiscal Year 1992)
|
Budget Amount *help |
¥12,000,000 (Direct Cost: ¥12,000,000)
Fiscal Year 1992: ¥4,000,000 (Direct Cost: ¥4,000,000)
Fiscal Year 1991: ¥4,000,000 (Direct Cost: ¥4,000,000)
Fiscal Year 1990: ¥4,000,000 (Direct Cost: ¥4,000,000)
|
Keywords | Exotic atom / Pionic atom / Nuclear reaction / Pion-nucleus interaction / パイ中間子原子 / 荷電交換核反応 / 核力 / 逆反応 / 中間エネルギ-実験 |
Research Abstract |
The aim of this project is to search for deeply-bound pionic atoms, such as 1s and 2p states of pionic Pb, using a novel nuclear-reaction method. The study of such states using the conventional pionic X-ray spectroscopy is impossible, since pions will be absorbed by the nucleus before they can reach the deeply bound states. We carried out Pb(d,2p) experiments using the SPES IV spectrometer at Saclay (France), Pb(n,d) experiments using the MRS spectrometer at TRIUMF (Canada), and Pb(d,^3He) experiments using the SPES I spectrometer at Saclay. Corresponding theoretical works have been done also. 1. (d,2p) reaction The experiment reached the sensitivity with which we should be able to find the pionic-atom peak, if the formation cross section was as large as was theoretically predicted. However, no peak was observed. 2. (n,d) and (d,^3He) theory The reason for the non-observation of peaks in the (d,2p) experiment was later understood through detailed theoretical works, and (n,d) or(d,^3He) reactions were found to be more suited for the production of deeply-bound pionic atoms. 3. (d,^3He) reaction Data were taken at 3゚ in the laboratory frame. Theory guides us to go to smaller angles to increase the cross section, but due to experimental difficulties, we were unable to go to much smaller angles. No peak was identified in the spectrum, but as a by product, the pion production cross section for p(d,^3He)pi^0 was measured for the fist time. 4. (n,d) reaction Near the pion production threshold, a structure, whose energy and cross section were consistent with theoretical prediction, was seen. However, the statistical significance was too small to draw strong conclusions, and the use of neutron beam makes it difficult to much improve the statistical accuracy.
|