• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

熱対流方程式の研究

Research Project

Project/Area Number 02640152
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionMeiji University

Principal Investigator

森本 浩子  明治大学, 理工学部, 教授 (50061974)

Co-Investigator(Kenkyū-buntansha) 桂田 祐史  明治大学, 理工学部, 助手 (80224484)
後藤 四郎  明治大学, 理工学部, 教授 (50060091)
今野 礼二  明治大学, 理工学部, 教授 (20061921)
藤田 宏  明治大学, 理工学部, 教授 (80011427)
Project Period (FY) 1990
Project Status Completed (Fiscal Year 1990)
Budget Amount *help
¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 1990: ¥1,800,000 (Direct Cost: ¥1,800,000)
Keywords熱対流方程式 / ブシネスク近似 / 弱解
Research Abstract

熱対流方程式(ブシネスク近似)の解の挙動について,次のような結果を得た。
1゚空間次元は2以上任意とし,領域は有界で境界は滑らかとする。速度についてはDirichlet O条件,温度については境界の一部でDirichlet条件,残りでNeumann条件を課したとき,境界条件やReynolds数,Rayleigh数の大きさいかんにかかわらず,定常問題の弱解が存在する。
2゚1゚と同じ仮定のもとで“小さな解"はもしあればただ1つである。
3゚空間次元は2〜4とし1゚と同様の仮定のもとで,非定常問題について考える。このとき任意の初期値,境界値に対して,弱解が存在する。
4゚2次元のとき,非定常問題の解は一意的に存在し,さらに,時間に関して連続である。
5゚3以上の次元のとき,非定常問題の弱解で,ある種の滑らかさ,小ささをもつ解は,あるとすれば,一意である。
6゚3゚で,方程式にあらわれる定数たちがある条件をみたせば,再性性をもつ弱解が存在する。
7゚6゚で特に2次元のとき,周期間題の弱解が存在する。
8゚2次元のとき,定常問題の小さな弱解は,漸近安定である。
9゚2次元で,周期問題の小さな弱解は,漸近安定である。

Report

(1 results)
  • 1990 Annual Research Report
  • Research Products

    (6 results)

All Other

All Publications (6 results)

  • [Publications] 森本 浩子: "On the exisfence and uniqueness of the stationary solution to the equation of natural convection" Tokyo J.Math.に投稿中.

    • Related Report
      1990 Annual Research Report
  • [Publications] 森本 浩子: "Periodic solution of the Boussinesq equation" 京都大学数理解析研究所講究録.

    • Related Report
      1990 Annual Research Report
  • [Publications] 桂田 祐史: "Asymptotic error analysis of the charge simulation method in a Jordan region with an analytic boundary" J.Fac.Sci.Univ.Tokyo Sect IA. 37. 635-657 (1990)

    • Related Report
      1990 Annual Research Report
  • [Publications] 今野 礼二: "The Helmholtz type equation on non compact twoーdimensional Riemannian manifolds" 明大科学技術研究所紀要. 30. (1991)

    • Related Report
      1990 Annual Research Report
  • [Publications] 後藤 四郎: "On the surjectivity criterion for Buchsbaum modules" Proc.Amer.Math.Soc.108. 641-646 (1990)

    • Related Report
      1990 Annual Research Report
  • [Publications] 藤田 宏: "関数解析" 岩波, (1991)

    • Related Report
      1990 Annual Research Report

URL: 

Published: 1990-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi