• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development and Applications of Learning Algorithms for Neural Networks

Research Project

Project/Area Number 02650235
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 電子通信系統工学
Research InstitutionThe University of Elector-Communications

Principal Investigator

TAKAHASHI Haruhisa  The University of Electro-Comminications Dept. of Communications and Systems, Associate Professor, 電気通信学部, 助教授 (90135418)

Co-Investigator(Kenkyū-buntansha) TAKEDA Mitsuo  The University of Electro-Communications Dept. of Communications and Systems, Pr, 電気通信学部, 教授 (00114926)
TOMITA Etsuji  The University of Electro-Communications Dept. of Communications and Systems, Pr, 電気通信学部, 教授 (40016598)
Project Period (FY) 1990 – 1991
Project Status Completed (Fiscal Year 1991)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 1991: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1990: ¥1,200,000 (Direct Cost: ¥1,200,000)
KeywordsNeural network / Learning Algorithm / Back Propagation / Recurrent Propagation / 線型分離 / 線型分離可能性
Research Abstract

(1)It is mathematically investigated as to what kind of internal representations are separable. by a single output unit of a three layer feed next neural network. A topologically described necessary and sufficient condition is shown for partitions of input spaces to be classified by the output unit. Then an efficient algorithm is proposed for checking if a given partition of the input space is resulted in linear separation at the output unit.
(2)We propose in this paper a new recurrent propagation learning algorithm. A biologically plausible neurodynamics is derived from which a quick algorithm to compute fixed points is obtained applying an approximation of stochastic process. The sensitivity of the networks is also obtained and from that a new recurrent propagation teaming algorithm is proposed. Our algorithm can run 10 times more quick over the previous ones. Furthermore, some unstable problems in recurrent propagation are overcome. Some simulation results are given to compare the re … More current propagations with Backpropagation and Mean Field Networks.
(3)Associative memory is realized by the, recurrent propagation Teaming rule as equilibrium states ; of the network. Since the number of hidden units can be increased unrestrictedly, the information capacity can be sufficiently large. This is the main advantage of the proposed network compared with previous ones that have no hidden units. Some printer fonts are used for patterns to be memorized in our experiments. The data show that the more the number of hidden units, the more the rate of memorization and correct association.
(4)A new teaming network is proposed in this chapter. Although the Backpropagation Teaming method has been succeeded in many applications, some difficulties exists, such as the local minimal problem, too long Teaming Teaming times, and capability of approximation to continuous mappings. We combine the competitive learning and supervised teaming methods in order to approximate continuous mappings. Some simulation results show that the proposed teaming algorithm works extremely more quick than the Back Propagation method and has reliable convergence property. Less

Report

(3 results)
  • 1991 Annual Research Report   Final Research Report Summary
  • 1990 Annual Research Report
  • Research Products

    (20 results)

All Other

All Publications (20 results)

  • [Publications] 石川 和弘: "リカレントプロパゲ-ションによる連想記憶" 電子情通信学会NC(ニュ-ロコンピュ-ティング)研究技術報告. NC91. (1992)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1991 Final Research Report Summary
  • [Publications] 本村 陽一: "連続関数の領域区分近似を実現するネットワ-ク" 電子情報通信学会NLP研究技術報告. NLP91ー21. (1991)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1991 Final Research Report Summary
  • [Publications] 高橋 治久: "Separability of Internal Representation in Multilayer Perceptions" Neural Networks.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1991 Final Research Report Summary
  • [Publications] 高橋 治久: "リカレントプロパゲ-ション学習法の高速化" 電子情報通信学会論文誌.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1991 Final Research Report Summary
  • [Publications] 高橋 治久: "バックプロパゲ-ションの生物学的実現可能性" 電子情報通信学会NC技術研究報告. NC90. 31-38 (1990)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1991 Final Research Report Summary
  • [Publications] 山下 泰弘: "簡単なネットワ-クによる時系列の認識と生成" 電子情報通信学会NC技術研究報告. NC90. (1991)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1991 Final Research Report Summary
  • [Publications] MOTOMURA, Youichi: ""A Network for Realizing Continuous mappings with Pieacewise Apploximation"" IEICE Technical Report. NLP91. 1-8 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1991 Final Research Report Summary
  • [Publications] TOMITA, Etsuji: ""A polynomial-time algorithm for finding a near-maximum clique its experimental evaluation"" Trans. IEICE. J-74-D-I. 307-310 (1991)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1991 Final Research Report Summary
  • [Publications] ISHIKAWA, Kazuhiro: ""Associative Memory Via Recurrent Propagation Leaning Rule"" IEICE Technical Report. NC91. 143-148 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1991 Final Research Report Summary
  • [Publications] TAKAHASHI, Haruhisa: ""Biological plausibility of backpropagation"" IEICE Technical Report. NC90. 31-38 (1990)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1991 Final Research Report Summary
  • [Publications] 石川 和弘: "リカレントプロパゲ-ションによる連想記憶" 電子情通信学会NC(ニュ-ロコンピュ-ティング)研究技術報告. NC91. (1992)

    • Related Report
      1991 Annual Research Report
  • [Publications] 本村 陽一: "連続関数の領域区分近似を実現するネットワ-ク" 電子情報通信学会NLP研究技術報告. NLP91ー21. (1991)

    • Related Report
      1991 Annual Research Report
  • [Publications] 高橋 治久: "Sepチrability of Internal Representation in Multilayer Perceptrons" Neural Networks.

    • Related Report
      1991 Annual Research Report
  • [Publications] 高橋 治久: "リカレントプロパゲ-ション学習法の高速化" 電子情報通信学会論文誌.

    • Related Report
      1991 Annual Research Report
  • [Publications] 高橋 治久: "Functing of the Hidden Layers and The Backpropagation Convergence Theorem" Neural Networks.

    • Related Report
      1990 Annual Research Report
  • [Publications] 本村 陽一: "線形分離可能性判定においてパ-セプトロンは最適かー実験的評価ー" 電子情通信学会 NC(ニュ-ラルコンピュ-テ-ション)研究会 研究技術報告. NC90. (1991)

    • Related Report
      1990 Annual Research Report
  • [Publications] 山下 泰弘: "簡単なネットワ-クによる時系列の認識と生成" 電子情通信学会NC(ニュ-ラルコンピュ-テ-ション)研究会 研究技術報告. NC90. (1991)

    • Related Report
      1990 Annual Research Report
  • [Publications] 高橋 治久: "リカレントプロパゲ-ションニュ-ラルネットワ-ク" 電子情通信学会論文誌.

    • Related Report
      1990 Annual Research Report
  • [Publications] 富田 悦次: "近似最大クリ-クを抽出する多項式時間アルゴリズムとその実験的評価" 電子情報通信学会論文誌DーI. J74ーDーI. (1991)

    • Related Report
      1990 Annual Research Report
  • [Publications] 高橋 治久: "バックプロパゲ-ションの生物学的実現可能性" 電子情報通信学会NC研究会技術研究報告. NC90. 31-38 (1990)

    • Related Report
      1990 Annual Research Report

URL: 

Published: 1990-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi