• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

境界値問題及び混合問題の超局所解析

Research Project

Project/Area Number 03640128
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionThe University of Tokyo

Principal Investigator

片岡 清臣  東京大学, 理学部, 助教授 (60107688)

Co-Investigator(Kenkyū-buntansha) 岩崎 克則  東京大学, 理学部, 助手 (00176538)
大島 利雄  東京大学, 理学部, 教授 (50011721)
小松 彦三郎  東京大学, 理学部, 教授 (40011473)
Project Period (FY) 1991
Project Status Completed (Fiscal Year 1991)
Budget Amount *help
¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 1991: ¥1,600,000 (Direct Cost: ¥1,600,000)
Keywords第2解析的特異性 / 陪特性帯 / 正則パラメ-タ / ポアソン積分 / 調和函数 / モジュライ空間 / ハミルトン系 / 微分加群
Research Abstract

1.境界値問題や混合問題に限らず一般に線形偏微分方程式系の超局所解析において解の第2解析的特異性を調べることが重要であるが,種々の問題で柏原・河合による包合的多様体に沿う第2解析的特異スペクトラムの理論では説明し切れない現象があることがわかった。一方,仏のLebeauは既に,より微細な概念である陪特性帯に沿う第2特異スペクトラムを定義していたが佐藤超函数の枠内での意味は不明であった。研究代表者らはこのスペクトラムの定義函数による同値な表現を発見し,包合的な場合とのつながりも見い出した。特に,いわゆるPー解析性という,正則パラメ-タをもたないが一意接続性をもつマイクロ函数の性質を発見した。2.小松は調和函数とポアソン積分を用いる超局所解析の新しい基礎づけに対し,若干の補いを行った。またベクトル値ラプラス超函数の理論を整備した。3.岩崎はリ-マン面上のフックス型微分方程式のなすモジュライ空間の構成をおこない,その空間のポアソン幾何的研究をおこなった。更にモジュライを空間上にモノドロミ-保存葉層構造を定義し,それを記述する完全積分ハミルトン方程式系を導出した。更にこの方程式がハミルトン系なる内在的理由をコホモロジカルに説明した。4.片岡は微分方程式系からその導来系への自然な射をある種の分解を用いて具体的に表現することに成功した。これは混合問題の解析の際得られた,微分加群のHeaviside函数による切断操作に基づくものである。

Report

(1 results)
  • 1991 Annual Research Report
  • Research Products

    (5 results)

All Other

All Publications (5 results)

  • [Publications] 小松 彦三郎: "Microlocal Analysis in Gevrey classes and in complex domains." Microlocal Analysis and Applications,Lecture Notes in Mathematics. 1495. 161-236 (1991)

    • Related Report
      1991 Annual Research Report
  • [Publications] 岩崎 克則: "Moduli and deformation for Fnchsian projective connections on a Riemann surface" J.Fac.Sci.Univ.Tokyo.Sect IA.Math.38. 431-531 (1991)

    • Related Report
      1991 Annual Research Report
  • [Publications] 岩崎 克則: "On solutions of the Poincare equation" Proc.Japan Acad.67. 211-214 (1991)

    • Related Report
      1991 Annual Research Report
  • [Publications] 岩崎 克則: "Fnchsian moduli on Riemann surfaces" Pacific J.Math.

    • Related Report
      1991 Annual Research Report
  • [Publications] 岩崎 克則,木村 弘信,下村 俊,吉田 正章: "From Gauss to Painleve" ViewegーVerlag Braunschweig, (1991)

    • Related Report
      1991 Annual Research Report

URL: 

Published: 1991-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi