Project/Area Number |
04245111
|
Research Category |
Grant-in-Aid for Scientific Research on Priority Areas
|
Allocation Type | Single-year Grants |
Research Institution | Yokohama City University |
Principal Investigator |
中神 祥臣 横浜市立大学, 文理学部, 教授 (70091246)
|
Co-Investigator(Kenkyū-buntansha) |
楫 元 横浜市立大学, 文理学部, 助手 (70194727)
生西 明夫 専修大学, 商学部, 助教授 (80016667)
|
Project Period (FY) |
1992
|
Project Status |
Completed (Fiscal Year 1992)
|
Budget Amount *help |
¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1992: ¥900,000 (Direct Cost: ¥900,000)
|
Keywords | 量子群 / Hopf環 / 作用素環 / von Neumaun環 / Woronowiez環 / 双対定現 / III型ファクター / II型ファクター |
Research Abstract |
量子群SUi(n)のIII_1型PowersファクターRiへの無限テンソル積型作用に関する不動点環は、Janes射影列により生成されるAFDII_1型ファクターに成り、Ri上のPowers状態を、このII_1型ファクターへ制限したものはMarkovトレイスになる。しかも、このトレイスを用いると、n=2の場合には1変数の、n≧3の場合には2変数のJanes多項式が与えられる。これらの事柄は、比較的早い時期から、証明も無いまゝに、専門家の間では良く知られていた。証明が無かった理由の1つは、量子群の作用素環への作用を考える場合には、量子群を作用素環を用いて記述する必要が生じるが、その準備ができていなかったからである。そこで、量子群の座標環であるHopf*環を稠密*部分多元環として含み、しかも、Hopf*環の群構造をその上へ拡張できるような作用素環の枠組を作る必要がある。しかし、これを具体化しようと思うと、余積の値域の問題、全逆写像の非有異性の問題など、取り扱いが容易でないと思われる問題とすぐに直面する。他方、作用素環では量子群が発見される以前から、群の量子化としてKac環という対象がvon Neumaun環を用いて定義され、研究されてきた。そこで、この考え方や枠組を参考に、量子群の9-変形に対応した、Kac環の9変形に相当する、Woronowiez環なるものを定義し、局所コンパクト群の場合に知られている、Portrjayin-淡中-Krein-辰馬の双対定現に対応する命題を示した。このWoronowiez環は、Hopf環の場合と違って、冨田-竹崎理論を用いて一般的に定義されているため、具体的な量子群がこの定義に適合するかどうかの確認が必要で、現在のところ、この適分性が確認できた量子群はSUi(n)以外には無い。最初に述べた結果の証明にはこれで充分であり、これでようやく、量子群SUi(n)のvon Neumaun環への作用を考えることができるようになった。
|