• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of an Intelligent Sub-structuring Loading-test System for Large-scale Frames

Research Project

Project/Area Number 04555138
Research Category

Grant-in-Aid for Developmental Scientific Research (B)

Allocation TypeSingle-year Grants
Research Field Building structures/materials
Research InstitutionUniversity of Tokyo

Principal Investigator

OHI Ken-ichi  University of Tokyo, IIS, Associate Prof., 生産技術研究所, 助教授 (90126003)

Co-Investigator(Kenkyū-buntansha) HARADA Kazuaki  Tokyo Electric Power Co.INC, Research Engineer, 研究員
CHEN Yiyi  University of Tokyo, IIS, Research Associate, 生産技術研究所, 助手 (00242123)
KOU Ki  University of Tokyo, IIS, Research Associate, 生産技術研究所, 助手 (80186600)
TAKANASHI Koichi  University of Tokyo, IIS, Prof.POSITION, 生産技術研究所, 教授 (60013124)
Project Period (FY) 1992 – 1993
Project Status Completed (Fiscal Year 1993)
Budget Amount *help
¥11,200,000 (Direct Cost: ¥11,200,000)
Fiscal Year 1993: ¥2,400,000 (Direct Cost: ¥2,400,000)
Fiscal Year 1992: ¥8,800,000 (Direct Cost: ¥8,800,000)
KeywordsSub-structuring Technique / Hybrid Analysis / Large-scale Frame / Application of Neural Network / On-line Test / 部分構造 / 大規模構造
Research Abstract

1. An intelligent loading-test system was developed by using hybrid sub-structuring technique. This system provides a useful tool to investigate the inelastic behaviors of large-scale frame.
2. Three types of flexible steel frame models were supposed, and they were tested by using the developed test system. The reliability of the system was checked too.
3. One of the characteristics of flexible frames is that the moment gradient along the column. A special test device is designed is changeable. A special test device used to test the columns under such a stress condition was designed.
4. The procedure of removal of the unbalanced forces produced during test was proposed. Four different predictors were tried during the tests and the results were compared after tests. (1) The simple predictor with the shortest time-consuming is elastic beam-column model ; however the effect to remove unbalanced force is not so good as the other models. (2) Multi-spring inelastic beam-column predictor makes unbalanced forces minimized but with the longest demand of time. An alternative is the use of a two-component bilinear model. (4) Neural network predictor is first tried in on-line test.

Report

(3 results)
  • 1993 Annual Research Report   Final Research Report Summary
  • 1992 Annual Research Report
  • Research Products

    (16 results)

All Other

All Publications (16 results)

  • [Publications] C.ZAVALA: "Special factors on substructuring hybrid simulation inplementation" 日本建築学会関東支部1992年度研究発表会研究報告集. (1993)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] サバラ・カルロス: "部分構造実験によるハイブリッド解析へのニューラルネットワークの応用" 日本建築学会大会学術講演梗概集. 1497-1498 (1993)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] C.ZAVALA: "Neural network predictor in hybrid earthquake response:performance and applicability" 構造工学論文集. 40B. (1994)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] C.ZAVALA: "Pseudo-dynamic substructuring hybrid test on flexible frames" Bulletin of Earthquake Resistant Structure Research Center. 27. (1994)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] 大井謙一: "ハイブリッド地震応答解析へのニューラルネットワークの応用" 生産研究. 45. 36-39 (1993)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] C.Zavala: "Special factors on substructuring hybrid simulation implementation" Research Report of Kanto Branch, AIJ. (1993)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] C.Zavala: "Neural network model in substructuring hybrid simulation" Summary of Technical Papers, AIJ. (1993)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] C.Zavala: "Neural network predictor in hybrid earthquake response : performance and applicability" Journal of Struc.Engng.Vol.40b. (1994)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] C.Zavala: "Pseudo-dynamic substructuring hybrid test on flexible frames" Bull.of ERS. No.27. (1994)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] K.OHI: "Neural network model in hybrid earthquake response simulation" SEISAN-KENKYU. Vol.45, No.8. 36-39 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] カルロス: "部分構造実験によるハイブリッド解析へのニューラルネットワークの応用" 日本建築学会大会学術講演梗概集. (1993)

    • Related Report
      1993 Annual Research Report
  • [Publications] C.ZAVALA: "Neural network predictor in hybrid earthquake response:performance and applicability" 構造工学論文集. 40B. (1994)

    • Related Report
      1993 Annual Research Report
  • [Publications] C.ZAVALA: "Pseudo-dynamic substructuring hybrid test on flexible frames" Bulletin of Earthquake Resistant Structure Research Center. 27. (1994)

    • Related Report
      1993 Annual Research Report
  • [Publications] 大井謙一: "ハイブリッド地震応答解析へのニューラルネットワークの応用" 生産研究. 45. 36-39 (1993)

    • Related Report
      1993 Annual Research Report
  • [Publications] カルロス ザバラ,高梨 晃一 大井 謙一,陳 以一,近藤 日出夫: "変動軸力と1軸曲げを受けるH形鋼柱のインテリジェント載荷実験" 1992年度日本建築学会大会(北陸)学術講演梗概集. C. 1253-1254 (1992)

    • Related Report
      1992 Annual Research Report
  • [Publications] カルロス ザバラ,大井 謙一 陳 以一: "Special Factors on Substructuring Hybrid Simulation Implementation" 日本建築学会関東支部1992年度研究発表会研究報告集〈構造系〉. (1993)

    • Related Report
      1992 Annual Research Report

URL: 

Published: 1992-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi