Co-Investigator(Kenkyū-buntansha) |
酒井 文雄 埼玉大学, 理学部, 教授 (40036596)
奥村 正文 埼玉大学, 理学部, 教授 (60016053)
木村 真琴 埼玉大学, 理学部, 助手 (30186332)
小池 茂昭 埼玉大学, 理学部, 助教授 (90205295)
金銅 誠之 埼玉大学, 理学部, 助教授 (50186847)
|
Budget Amount *help |
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 1992: ¥2,000,000 (Direct Cost: ¥2,000,000)
|
Research Abstract |
長瀬“Gauss-Bonnet operator on singular algebraic curves"において特異点を持つ曲線上のGauss-Bonnet作用素D=d+δの(L^2-)指数の考察がなされた。この研究はAtiyah-Singerの指数定理の一つの拡張であった。この研究ののち,その指数定理の出発点となったスピン構造論の拡張に取り組んだ。投稿中のため11.研究発表には記入しなかったが,現在そのスピン構造の四元数ケーラー多様体に適した変形物の導入に成功している(Nagase,Spin^q structures(preprint,1992),q=quaternionic)。AtiyahとSingerはSpin構造の導入と同時に複素多様体に適したそれの変形物,Spin^c構造(c=complex),をも導入している。今回,研究代表者は,最近の四元数ケーラー多様体への関心の高まりに刺激されてそれに適した変形に取り組んだ。Spin^q群の表現,概四元数構造の可く標準的Spin^q構造,Spin^qベクトル束,Dirac作用素,その指数,等,について上述preprintにおいて論じている。いうなればSpin,Spin^Cにおいて論じられた代表的テーマを,Spin^qについても考察してみた。 このSpin^q構造の研究はこれで終わりか?そのことについて,今後の展開をも含めて少々述べて起きたい。一見(Spin^c構造がある意味でそうであるように)Spin^q構造はSpin,Spin^cの類似物でしかないように見える。著者自身の感触も初期の段階ではその程度であった。ところがその後の考察によるとSpin^cとSpin^qはtwistor理論を介して深いつながりを持つことがわかってきている(Spin,Spin^cの間にはない関係)。この点については現在研究が進行中の段階でもあり詳しくは述べられないが,標語だけでもSpin^c,Spin^q,twistor,Diracといったつながりは何かを予感させるものがある。
|