• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analytic transformations of complex manifolds

Research Project

Project/Area Number 04640154
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionKYOTO UNIVERSITY

Principal Investigator

UEDA Tetsuo  Kyoto Univ.Faculty of Integrated Human Studies, AP., 総合人間学部, 助教授 (10127053)

Co-Investigator(Kenkyū-buntansha) MORIMOTO Yoshinori  Kyoto Univ., Graduate School of Human & Environment Studies, Assist.Professor, 人間・環境学研究科, 助教授 (30115646)
USHIKI Shigehiro  Kyoto Univ., Graduate School of Human & Environment Studies, Professor, 人間・環境学研究科, 教授 (10093197)
MIYAMOTO Munemi  Kyoto Univ., Integrated Human Studies, Professor, 総合人間学部, 教授 (00026775)
TAKEUTI Akira  Kyoto Univ., Integrated Human Studies, Professor, 総合人間学部, 教授 (40026761)
AKIBA Tomoharu  Kyoto Univ., Integrated Human Studies, Professor, 総合人間学部, 教授 (60027670)
藤木 明  京都大学, 人間環境学研究科, 教授 (80027383)
藤家 龍雄  京都大学, 総合人間学部, 教授 (10026734)
Project Period (FY) 1992 – 1993
Project Status Completed (Fiscal Year 1993)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 1993: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1992: ¥1,300,000 (Direct Cost: ¥1,300,000)
KeywordsComplex dynamics / Fatou set / Critically finite map / Kobayashi hyperbolicity / ジュリア集合 / 楕円関数 / 超吸引的不動点 / 安定多様体 / ケーラー多様体 / ドルボー補題 / L^2コホモロジー
Research Abstract

We investigeted complex dynamical system defind by holo-morphic maps of a complex projective space onto itself, as a generalization of the iteration theory of rational function of one complex variable.
The Fatou set is defined to be the maximal open set on which the family of the iterates of such a holomorphic map constitute a normal family. This is considered as one of the most fundamental object in the theory. In our study we have proved that the Fatou set os pseudoconvex and hence a Stain open set, and further that follows that, every basin of attraction of an attracting periodic point or that of parabolic periodic point contains a critical point.
We have also given some examples of dynamical systems ori pro-jective planes for which the Fatou set can be concretely described using elliptic functions, and for which the Fatou set is empty.
Further we studied the ralation among the Fatou set, the forward orbit of the set of the critical points and its limit set set. In particular, we stydied the critically finite case, i.e., the case for which the orbit of the the set of the critical points is an algebraic set. For the case of dimension 2, we have given the condi-tion for the Fatou set is empty.

Report

(3 results)
  • 1993 Annual Research Report   Final Research Report Summary
  • 1992 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] 上田哲生: "Fatou sets in complex dynamics on projective spaces" Journal of the Mathematical Society of Japan. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] 上田哲生: "Critical orbits of holomorphic maps on projective spaces" The Journal of Geometric Analysis. (発表予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] 森本芳則: "Some remarks on hypoelliptic operators which are not micro-hypoelliptic" Publ.RIMS Kyoto Univ.28. 579-586 (1992)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] 森本芳則: "Estimates for degenarate Schrodinger operators and hypoellipticity for infinitely degenerate elliptic operators" J.Math.Kyoto Univ.32. 333-372 (1992)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] 森本芳則: "Hypoelliptic operators in R^3 of the form X_1^2+X_2^2" J.Math.Kyoto.Univ.32. 461-484 (1992)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] 森本芳則: "Hypoelliptic operators of principal type with infinite degeneracy" Tukuba J.Math. 19(発表予定). (1994)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] UEDA, Tetsuo: "Fatou sets in complex dynamics on projective spaces" J.Math.Soc.Japan. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] UEDA, Tetsuo: "Critical orbits of holomorphic maps on projective spaces" The Journal of Geometric Analysis. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] MORIMOTO,Yoshinori: "Some remarks on hypo-elliptic operators which are not micro-hypoelliptic" Publ.RIMS Kyoto Univ.28. 579-586 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] MORIMOTO,Yoshinori: "Estimates for degenerate Schrodinger operators and hypo-ellipticity for infinitely dege-nerate elliptic operators" J.Math.Kyoto Univ.32. 333-372 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] MORIMOTO,Yoshinori: "Hypoelliptic operators in R^3 of the form X_1^2 + X_2^2" J.Math.Kyoto Univ.32. 461-484 (1992)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] MORIMOTO,Yoshinori: "Hypoelliptic operators of principal type with infinite degeneracy" Tukuba J.Math.(to appear). 19 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1993 Final Research Report Summary
  • [Publications] 上田哲生: "Fatou sets in complex dynamics on projective spaces" Journal of the Mathematical Society of Japan. (発表予定).

    • Related Report
      1993 Annual Research Report
  • [Publications] 上田哲生: "Critical orbits of holomorphic maps on projective spaces" The Journal of Geometric Analysis. (発表予定).

    • Related Report
      1993 Annual Research Report
  • [Publications] 森本芳則: "Some remarks on hypoelliptic operators which are not micro-hypo-elliptic." Publ.RIMS Kyoto Univ.28. 579-586 (1992)

    • Related Report
      1993 Annual Research Report
  • [Publications] 森本芳則: "Estimates for degenarate Schrodinger operators and hypoellipticity for infinitely degenerate elliptic operators" J.Math.Kyoto Univ.32. 333-372 (1992)

    • Related Report
      1993 Annual Research Report
  • [Publications] 森本芳則: "Hypoelliptic operators in R^3 of the form X_1^2+X_2^2" J.Math.Kyoto Univ.32. 461-484 (1992)

    • Related Report
      1993 Annual Research Report
  • [Publications] 森本芳則: "Hypoelliptic operators of principal type with infinite degeneracy" Tukuba J.Math. 19(発表予定). (1994)

    • Related Report
      1993 Annual Research Report
  • [Publications] 上田 哲生: "射影空間上の複素力学系" 数理解析研究所講究録. 814. (1992)

    • Related Report
      1992 Annual Research Report
  • [Publications] 上田 哲生: "Complex dynamical systems on projective spaces" to appear in Topics around Dynamical Systoms. (1993)

    • Related Report
      1992 Annual Research Report
  • [Publications] 宇敷 重廣: "Boettcher´s theorem and super-stable marifolds for multedemensiovral complex dynamicalstystems" Advanced Series in Dynanrical Systems. 10. (1993)

    • Related Report
      1992 Annual Research Report
  • [Publications] 宇敷 重廣: "Super-stable manifolds of super-saddle-type Julia sets in C^2" Advanced Series in Dymavrical Systems. 11. (1993)

    • Related Report
      1992 Annual Research Report
  • [Publications] 藤木 明: "On extremal Kahler metrics on ruled manifold" Nagoya Math.J.126. 89-102 (1992)

    • Related Report
      1992 Annual Research Report
  • [Publications] 藤木 明: "An L^2-Dolbeault lemma and its applications" Publ.RIMS,Kyoto Univ.28. (1992)

    • Related Report
      1992 Annual Research Report

URL: 

Published: 1992-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi