• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Initial value problem of quasi-linear hyperbolic systems and global geometric optics approximation

Research Project

Project/Area Number 05452011
Research Category

Grant-in-Aid for General Scientific Research (B)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionKYUSHU UNIVERSITY

Principal Investigator

YOSHIKAWA Atsushi  Kyushu U.Grad.Sch.Math., Prof., 大学院・数理学研究科, 教授 (80001866)

Co-Investigator(Kenkyū-buntansha) SUZUKI Masakazu  Kyushu U.Grad.Sch.Math., Prof., 大学院・数理学研究科, 教授 (20112302)
NISHINO Toshio  Kyushu U.Grad.Sch.Math., Prof., 大学院・数理学研究科, 教授 (30025259)
KUNITA Hiroshi  Kyushu U.Grad.Sch.Math., Prof., 大学院・数理学研究科, 教授 (30022552)
MIYAKAWA Tetsuro  Kyushu U.Grad.Sch.Math., Prof., 大学院・数理学研究科, 教授 (10033929)
KAWASHIMA Shuichi  Kyushu U.Grad.Sch.Math., Prof., 大学院・数理学研究科, 教授 (70144631)
谷口 説男  九州大学, 工学部, 助教授 (70155208)
Project Period (FY) 1993 – 1994
Project Status Completed (Fiscal Year 1994)
Budget Amount *help
¥5,300,000 (Direct Cost: ¥5,300,000)
Fiscal Year 1994: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 1993: ¥3,700,000 (Direct Cost: ¥3,700,000)
KeywordsGeometric optics approximation / Asymptotic solutions / Quasi-linear hyperbolic systems / Modulation equations / Mean-value / Mean-convolution product / Asymptotic weak solution / Formal solution / 準線形強双曲系 / 平均合成績 / 漸近展開 / 相変数 / モデュレーション方程式 / 概周期性 / バーガース方程式 / 等エントロピー流れ
Research Abstract

The aim of research :
(1) Construction of formal solutions with the initial data involving a parametery lambda for quasi-linear symmetric strongly hyperbolic systems of partial differential equations
(2) Verification of such formal solutions as globally valid weak formal solutions
(3) Clarification of the relation of such weak global formal solutions and the genuine solution of the original systems
Results obtained through the present research :
(1) 2-dimensionality of the range of the linear phase functions
(2) Introduction of a minimal class of constituent functions for formal solutions
(3) Tractable representaions of derived modultion equations using simplified phase parameters
(4) Verification of a natural relation between weak solutions of derived modulation equations and weak formal solutions of the original systems in case of systems of conservation laws
(5) Validity as weak formal solutions to the original systems of such global weak solutions of derived modulation equations
The details will be expounded in papers in preparation which will be published elsewhere.

Report

(3 results)
  • 1994 Annual Research Report   Final Research Report Summary
  • 1993 Annual Research Report
  • Research Products

    (2 results)

All Other

All Publications (2 results)

  • [Publications] Atsushi Yoshikawa: "Quasilinear geometric optics approximation" Lecture Notes in Mathematics. 1540. 403-413 (1993)

    • Related Report
      1993 Annual Research Report
  • [Publications] Atsushi Yoshikawa: "Solutions containing a large parameter of a quasi-linear-------" Transactions of the American Mathematical Society. 340-1. 103-126 (1993)

    • Related Report
      1993 Annual Research Report

URL: 

Published: 1993-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi