Initial value problem of quasi-linear hyperbolic systems and global geometric optics approximation
Project/Area Number |
05452011
|
Research Category |
Grant-in-Aid for General Scientific Research (B)
|
Allocation Type | Single-year Grants |
Research Field |
解析学
|
Research Institution | KYUSHU UNIVERSITY |
Principal Investigator |
YOSHIKAWA Atsushi Kyushu U.Grad.Sch.Math., Prof., 大学院・数理学研究科, 教授 (80001866)
|
Co-Investigator(Kenkyū-buntansha) |
SUZUKI Masakazu Kyushu U.Grad.Sch.Math., Prof., 大学院・数理学研究科, 教授 (20112302)
NISHINO Toshio Kyushu U.Grad.Sch.Math., Prof., 大学院・数理学研究科, 教授 (30025259)
KUNITA Hiroshi Kyushu U.Grad.Sch.Math., Prof., 大学院・数理学研究科, 教授 (30022552)
MIYAKAWA Tetsuro Kyushu U.Grad.Sch.Math., Prof., 大学院・数理学研究科, 教授 (10033929)
KAWASHIMA Shuichi Kyushu U.Grad.Sch.Math., Prof., 大学院・数理学研究科, 教授 (70144631)
谷口 説男 九州大学, 工学部, 助教授 (70155208)
|
Project Period (FY) |
1993 – 1994
|
Project Status |
Completed (Fiscal Year 1994)
|
Budget Amount *help |
¥5,300,000 (Direct Cost: ¥5,300,000)
Fiscal Year 1994: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 1993: ¥3,700,000 (Direct Cost: ¥3,700,000)
|
Keywords | Geometric optics approximation / Asymptotic solutions / Quasi-linear hyperbolic systems / Modulation equations / Mean-value / Mean-convolution product / Asymptotic weak solution / Formal solution / 準線形強双曲系 / 平均合成績 / 漸近展開 / 相変数 / モデュレーション方程式 / 概周期性 / バーガース方程式 / 等エントロピー流れ |
Research Abstract |
The aim of research : (1) Construction of formal solutions with the initial data involving a parametery lambda for quasi-linear symmetric strongly hyperbolic systems of partial differential equations (2) Verification of such formal solutions as globally valid weak formal solutions (3) Clarification of the relation of such weak global formal solutions and the genuine solution of the original systems Results obtained through the present research : (1) 2-dimensionality of the range of the linear phase functions (2) Introduction of a minimal class of constituent functions for formal solutions (3) Tractable representaions of derived modultion equations using simplified phase parameters (4) Verification of a natural relation between weak solutions of derived modulation equations and weak formal solutions of the original systems in case of systems of conservation laws (5) Validity as weak formal solutions to the original systems of such global weak solutions of derived modulation equations The details will be expounded in papers in preparation which will be published elsewhere.
|
Report
(3 results)
Research Products
(2 results)