• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Considerations on the unit group of a ring and unramified extensions

Research Project

Project/Area Number 05640033
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionAichi University of Education

Principal Investigator

KANEMITSU Mitsuo  Aichi University of Education, Faculty of Education, Professor, 教育学部, 教授 (60024014)

Co-Investigator(Kenkyū-buntansha) YOSHIDA Kenichi  Okayama University of Science, Faculty of Science, Professor, 理学部, 教授 (60028264)
SUZUKI Masashi  Assitant Professor, 教育学部, 助教授 (50216438)
ISHITOYA Kiminao  Assistant Professor, 教育学部, 助教授 (80133130)
OHTA Minoru  Professor, 教育学部, 教授 (30022635)
Project Period (FY) 1993 – 1994
Project Status Completed (Fiscal Year 1994)
Budget Amount *help
¥1,300,000 (Direct Cost: ¥1,300,000)
Fiscal Year 1994: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 1993: ¥700,000 (Direct Cost: ¥700,000)
KeywordsAnti-integral extension / The unit group of a ring / Flat extension / Differential module / Unramified extension / anti-integral拡大環 / 環の不分岐拡大 / 整拡大環
Research Abstract

All rings are assumed to be commutative with identity. Let R be a Noetherian integral domain with quotient field K and let alpha be a non-zero element of an algebraic field extension L of K.Also, let pi : R[X] * R[alpha] be the R-algebra homomorphism sending X to alpha and letpsi_<alpha>(X)=X^d+eta_1X^<d-1>+・・・+eta_d be the monic minimal polynomial of alpha over K.Now, put I_<beta>={r*R|rbeta*R}for beta*L,put I_<[alpha]>=I_<eta1>*I_<eta2>*・・・*I_<etad> and put J_<[alpha]>=I_<alpha>c (psi_<alpha> (X)) where c (psi_<alpha> (X)) denotes the R-submodule of K generated by the coefficients of psi_<alpha>(X). Moreover, put I^^-_<[alpha]>=I_<[alpha]>(1, eta_1, ・・・, eta_<d-1>) and put J^^-_<[alpha]>=eta_dI_<[alpha]>. The element alpha is called an anti-integral element of degree d over R if Ker pi=I_<[alpha]>psi_<alpha>(X)R[X]. When alpha is an anti-integral element over R,A=R_<[alpha]> is called an anti-integral extension of R.In case L=K,it its well known that R[alpha] is an anti-integral extension of R if and only if R=R[alpha]*R[alpha^<-1>].
Assume that A=R[alpha] is an anti-integral extension of R.Then we obtain the following results :
1. I^^-_<alpha>=R if and only if the restriction mapping psi : Spec(A) * Spec(R) is surjective and A is a flat R-module.
2. A is an unramified extension over R,that is, the differential module OMEGA_R(A)=(0) if and only if I_<[alpha]>psi'_<alpha>(alpha)A=A.In this case, A is a flat R-module. This means that unramified extensions relate the unit elements.
3. A is a flat R-module if and only if I^^-_<[alpha]>A=A.In case L=K,it is equivalent that A is an unramified extension of R.
4. Let alpha_i(1<less than or equal>i<less than or equal>n)be elements of L such that the R[alpha_i] are unramified over R.Then R[alpha_1, alpha_2, ・・・, alpha_n] is an unramified extention over R.
5.If A is integral over R,then alpha is a unit of A and only if eta_d is a unit of R.

Report

(3 results)
  • 1994 Annual Research Report   Final Research Report Summary
  • 1993 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] Mitsuo KANEMITSU: "Anti-integral extensions and unramified extensions" Mathematical Journal Okayama University. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] Mitsuo KANEMITSU: "環の単元群について(in Chinese)" Journal of Yanbian University. 19. 7-11 (1993)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] Mitsuo KANEMITSU: "Some properties of extensions R〔α〕∩R〔α^<-1>〕over Noethe-rian domains R" Communications in Algebra. (to appear). (1995)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] Mitsuo KANEMITSU: "The classification of primary ideals" Osaka Journal of Mathematics. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] Jin Ying LIE: "零因子を持つある種の環におけるイデアルの考察" 東北工業大学紀要. (1995年発行予定).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] Mitsuo KANEMITSU: "Invertible elements of a super-primitive ring extension over a Noetherian domain" Bull.Aichi Univ.Kducation. 43. 1-6 (1994)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] Mitsuo KANEMITSU: "Anti-integral extensions and unramified extensions" Math.J.Okayama Univ.(to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] Mitsuo KANEMITSU: "On the unit group of a ring(in Chinese)" J.of Yanbian Univ.19. 7-11 (1993)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] Mitsuo KANEMITSU: "Some properties of extensions R[alpha]*R[alpha^<-1>] over Noetherian domains R" Communications in Algebra. to appear. (1995)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] Mitsuo KANEMITSU: "The classification of primary ideals" Osaka J.Math.to appear.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] Jim Ying LIE: "Considerations of ideals in certain rings with zero divisors" Memoirs Tohoku Inst.Tech.to appear. (1995)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] Mitsuo KANEMITSU: "Invertible elements of a super-primitive ring extension over a Noetherian domain" Bull.Aichi Univ.Education. 43. 1-6 (1994)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1994 Final Research Report Summary
  • [Publications] Mitsuo KANEMITSU: "Some properties of extensions R[α]∩R[α^<-1>] over Noetherian domains R" Communications in Algebra. (to appear).

    • Related Report
      1994 Annual Research Report
  • [Publications] Mitsuo KANEMITSU: "The classification of primary ideals" Osaka Journal of Mathematics. (to appear).

    • Related Report
      1994 Annual Research Report
  • [Publications] Mitsuo KANEMITSU: "Anti-integral extensions and unramified extensions" Mathematical Journal Okayama University. (to appear).

    • Related Report
      1994 Annual Research Report
  • [Publications] 金 應烈: "零因子を持つある種の環におけるイデアルの考察" 東北大学紀要. (発表予定).

    • Related Report
      1994 Annual Research Report
  • [Publications] Susumu ODA: "On subrings of super-primitive extensions" Communications in Algebra. 22. 5313-5324 (1994)

    • Related Report
      1994 Annual Research Report
  • [Publications] Susumu ODA: "Remarks on LCM-stableness and reflexiveness" Mathematical Journal of Toyama University. 17. 93-114 (1994)

    • Related Report
      1994 Annual Research Report
  • [Publications] M.Kanemitsu et al.: "On the unit group of a ring" Journal of Yanbian University. 1993 No.4(to appear). (1993)

    • Related Report
      1993 Annual Research Report
  • [Publications] M.Kanemitsu et al.: "Invertible elements of a super-primitive ring extension over a Noetherian domain" The Bulletin of Aichi University of Education. 43. 1-6 (1994)

    • Related Report
      1993 Annual Research Report
  • [Publications] 金光三男 他: "ある種の有限環に付随したグラフの彩色数について" イプシロン. 36. 98-101 (1994)

    • Related Report
      1993 Annual Research Report
  • [Publications] 金光三男 他: "零因子を多くもつ環とグラフ理論" イプシロン. 36. 93-97 (1994)

    • Related Report
      1993 Annual Research Report
  • [Publications] K.Yoshida et al.: "On flatness of birational prime-extensions of a normal domain" Kobe Journal of Mathematics. 10. 13-15 (1993)

    • Related Report
      1993 Annual Research Report
  • [Publications] K.Yoshida et al.: "On subrings of super-primitive extensions" Communications in Algebra. (to appear).

    • Related Report
      1993 Annual Research Report

URL: 

Published: 1993-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi