Co-Investigator(Kenkyū-buntansha) |
田谷 久雄 早稲田大学, 理工学部, 助手 (40257241)
村林 直樹 早稲田大学, 理工学部, 助手 (30247233)
足立 恒雄 早稲田大学, 理工学部, 教授 (60063731)
有馬 哲 早稲田大学, 理工学部, 教授 (90063354)
上野 喜三雄 早稲田大学, 理工学部, 教授 (70160190)
|
Budget Amount *help |
¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 1993: ¥2,000,000 (Direct Cost: ¥2,000,000)
|
Research Abstract |
本研究では,有理数体上の正定値四元数環のlevel(q,N)のEichler型orderについて以下の様な諸問題を研究した: 1.Type number T(q,N)をlevel qN,重さ2の保型形式のうち,Atkin-LehnerによるinvolutionW_p(p|qN)の固有部分空間の次元と関係付ける公式を発見し,その証明を与えた. 2.Brandt行列が各固有部分空間上に以下に作用するかを,数論的に記述子,Brandt行列とHecke作用素の跡を細分して比較する事によりその証明を与えた. 3.与えられたlevel(q,N)に対して,Eichler orderの族O(p,s)を二つのパラメーターp,sを用いて構成した.更に,コンピュータを用いて,qN<5000の範囲内では常に族O(p,s)がT(q,N)個のEichler orderの各同型類を尽くす事が確かめられた. 4.qN<5000の範囲内で,各(q,N)に対してT(q,N)個のEichler orderのtheta級数を計算し,その一次独立性を調べた. 5.これらのtheta級数のランク(階数)は,保型形式fのうちHecke作用素の固有関数で,L-関数がL(f,1)≠0をみたすものの個数に等しい事が知られている.我々の計算は,s=1に於いてL(f,s)が2位の零点を持つ保型形式fの個数を与える.その様なfのlevel qNに関する分布を調べた結果,著しい一様性を示す事が明らかになった. 6.Eichler orderに付随する他の4種類の二次形式付き格子に対してもtheta級数を計算し,その一次独立性を調べた.その結果これらのtheta級数の間に著しい関係が存在する事が明らかになった.
|